NTersKiLL
learning

Programming Capabilities

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

0 1/48

Objectives

Programming Capabilities

In this module, you will look at the most commonly used programming languages in the IBM enterprise environment. You will also discover where
they fit in past and future strategies of IBM, and their strong points, weak points, and idiosyncrasies.

After completing this module, you will be able to:

« Recognize Highlights in the Timeline of Programming Language Development

« |dentify Commonly Used Programming Languages in the IBM Enterprise Environment
« Recognize Fourth-Generation (4GL) Languages

¢ Define the Integrated Language Environment

o |dentify Stored Procedures

= Programming Languages > History of Programming Languages

Object-oriented

1940s Pioneers 1st Generation 2nd Generation 3rd Generation
Hard-wired Binary Assembly coBOL
computers Octal Mnemonics Fortran G)
Hexidecimal Pascal 4th Generation
Opcodes PL/I
C
BASIC FOCl.JS
Easytrieve
Plain English

Computer programming languages, which are languages that are used to control the behavior of computers, have evolved along with computer hardware. As more storage and memory becam

available, these initial basic instructions, evolved into coding languages.

The earliest coding systems used machine code, entered as binary numbers. These codes were represented by short mnemonics that mapped directly back to an opcode, but were easier to

remember and read.

These mnemonics evolved into the assembler that you see today.

0 3148

= Programming Languages > History of Programming Languages

2nd Generation

3rd Generation

Object-oriented

1940s Pioneers 1st Generation
Hard-wired Binary
computers Octal
Hexidecimal
Opcodes

By the late 1950s, the initial third-generation languages appeared, where each command could represent multiple opcodes and structured programming was possible

Assembly
Mnemonics

COBOL
Fortran
Pascal
PL/I
(o}
BASIC

In the late 1970s and through to the 1980s, fourth-generation languages were designed to be more natural languages.

In the 1990s, object-oriented languages that built on an object-based design and structure gained in popularity.

In the 2000's many programming languages where extended to provide Web interfaces.

0 4148

4th Generation

FOCUS
Easytrieve
Plain English

= Programming Languages > History of Programming Languages

1940s Pioneers

1st Generation

2nd Generation

3rd Generation

Object-oriented

Hard-wired
computers

\
Binary
Octal
Hexidecimal
Opcodes

Assembly
Mnemonics

COBOL

Fortran

Pascal
PL/I

BASIC

4th Generation

FOCUS
Easytrieve
Plain English

Due to the long history of the IBM enterprise environment, many of these programming languages are still being used and programs written in these languages continue to require maintenance
development on today's mainframes.

This includes areas where opcodes need to be coded, but these are no longer thought of as a programming language.

0 5/48 e <

= Programming Languages > Assembly Language

HLASM

@ HHHTTT

Intel x86

’
' LT

0os X

First, you will explore IBM Z Assembler, more correctly called High Level Assembler (HLASM). Other processing platforms such as Intel have their own version of Assembler; however HLASM i
unique to IBM Z mainframes.

Assembler languages are low-level languages that have a close relationship to the CPU or processor where they execute.

0 6 /48 v <

= Programming Languages > Assembly Language

The assembly process

— L —) —— — el ———
- S B

Source Assembler Object Binder Load module/
Program Object

REC1 REC1
REC2 REC2
REC3 REC3
REC4 REC4

Assembly language is a low-level or symbolic programming language containing two types of instructions:

¢ Instructions that you intend for the hardware, known as mnemonic or machine instructions
« Instructions to tell the assembler what to do or how to generate the machine instructions

The assembler is the tool that converts source code written in assembly language to machine instructions.

0 7148

= Programming Languages > Assembly Language

| | I |
| | I |
1 ' 10 ' 16 ; 72

(name) operation [operand(s)] [comments] c
MyLoop LA R2,1(R2) Redo the loop
BCT R3,MyLoop n times.

Assembly language is made up of name, symbolic operation codes or mnemonics, operands, and comments, all dependent on column positions.

There are many hundreds of symbolic operation codes, including sets for 24, 31, and 64 bit operations, each with their own set of allowed operands.

0 8148

= Programming Languages > Assembly Language

Assembly language

A
v

Underdeveloped

Legacy systems Systems programs APIs or "exits"

Although assembly language appears to be very cryptic and difficult to maintain, it is still used in legacy systems that were constructed when assembly language was all that was available.

Because it enables direct access to memory and machine resources, assembly language is used in many systems programs to perform tasks that would otherwise not be accessible.

0 9/48 o

= Programming Languages > Assembly Language

Assembly language

A
v

Underdeveloped

Legacy systems Systems programs APIs or "exits"

Assembly language is also used to access underdeveloped APIls and interfaces where no suitable high-level language interface has been provided, and to provide generic extensions or exits to
systems.

This is possible because whatever high-level language a system is written in, it runs as machine code, which is only one step down from assembly language.

0 10/48 e <

= Programming Languages > COBOL

COmmon Business Oriented Language

The most widely used programming language in the IBM enterprise environment is COmmon Business Oriented Language (COBOL). This name incorporates the two significant aspects of the
language.

COBOL is common because it does not belong to any single computer manufacturer and it has been implemented on most computer architectures.

COBOL is business oriented because it is designed to handle files and records related to business transactions, and is not designed for complex mathematical computations.

A 11 1 AD

= Programming Languages > COBOL

v

COBOL

The original COBOL, which was designed in 1959, has evolved through a number of revisions to incorporate new ideas and advances in data storage, communications, and presentations.
Because of its long history and its universal nature, COBOL accounts for the largest proportion of code currently in existence in the IBM enterprise environment.

COBOL continues to be a viable language for ongoing development.

0 12/48 %

e Programming Languages > COBOL

PROCEDUR

PROCEDUREL.
DISPLAY
TOP RUN.

COBOL is a highly structured language with four defined program divisions, coding in paragraphs and sections, and column formatting requirements in older and mainframe versions.

Compared with other third-generation languages, COBOL's use of English-like verbs and encouragement of descriptive variable names can, with discipline by developers, lead to code that is
essentially self-documenting and thus easier to maintain.

0 13/48 "y

— Programming Languages > COBOL

COBOL is a simple language with a limited scope of function. It is most suited to applications dealing with data records and data handling.

It is not suitable for complex mathematical formulae and calculations. When faced with such a requirement, other options should be considered.

0 14148

= Programming Languages > PLII

COBOL IBM's answer
FORTRAN
— > PL/I systems
ALGOL PL/I
Assembly

PL/lis a language developed by IBM, originally as an attempt to create a definitive programming language that would provide all the facilities of COBOL, Fortran, and ALGOL, as well as a lot of
system control that is available with Assembly.

For a period in the 1970s and 1980s, PL/I was heavily supported and promoted by IBM as a superior development environment, and it is found in many systems dating from that period.

PL/I is also referred to as PL1 and both names are in common use.

0 15/48 R ¢

= Programming Languages > PLII

Enterprise PL/I for z/OS PL/I for AIX
PL/I for MVS and VM PL/I for z/VSE

Enterprise PL/| for z/OS is able to generate code that takes advantage of the latest IBM Z mainframe
architecture, while supporting the latest versions of IBM mainframe software such as CICS, IMS, and Db2.

IBM continues to support PL/I, providing ongoing enhancements to PL/I cross platform products shown here.

Mouse-over the PL/I versions for more information.

0 16/48

= Programming Languages > PLIJI

Procedures

(Main, subroutines and functions)
* Internal procedures
* External procedures

* Recursive procedures

Begin-end blocks

In comparison to COBOL, PL/I delivers a great deal of flexibility in programming structure. This flexibility can provide a powerful programming platform, but it also requires extra care to ensure tl
can be maintained.

PL/I is equally adept at file handling and complex mathematical functions.

0 17148 e <

= Programming Languages > PLII

In comparison to other third-generation languages, PL/I provides a large amount of low-level control of the execution environment, including the loading and unloading of external modules, FET(

PLIPROGl: PROCEDURE;
DCL ABC ENTRY EXTERNAL;
FETCH ABC;
CALL ABC;
RELEASE ABC;
END PLIPROGIL;

PLIPROGZ2: PROCEDURE;
DCL ABC ENTRY EXTERNAL;
DCL A FIXED BIN INIT(1);
CALL ABC,
IF A = 2 THEN RELEASE ABC;
END PLIPROGZ;

and RELEASE, and pointer access to internal and external storage.

= Quiz > Programming Languages

Question 1 of 2

The assembler tool performs which action on assembly language source code?

Select the correct option.

Click Check My Answer when you have finished.

|| Itis used to debug errors in the source code.

D It converts the source code to machine instructions.

D It is used to precompile code and check for syntax errors.

|| 1t produces the executable load module.

Check My Answer «

<

Programming Languages > C

Executing C compiler on z/OS

S . S .C

Batch

Menu Utilities Compilers Options Status Help

ISPF Primary ion Menu
option > tso CC 'DZS.C(PRIME)'

TSO command

essing
mands

tion wor

to Terminate using log/list defaults

IBM provides a C compiler that conforms to ANSI C standards. This compiler can be executed from TSO or batch. As with all other UNIX operating systems, the C compiler can be executed as

command from a z/OS UNIX shell.

The IBM C compiler is called XL C/C++.

0 20748

= Programming Languages > C

UNIX or Windows ‘ z/I0S

C-based system $ C-based system

Modified and compiled

With IBM Z, C programs created on other platforms can be ported to z/OS. Some software vendors, including IBM, have done this for some of their software products.

IBM XL C supports all the normal C features but also includes z/OS-specific functions and features to do things such as access traditional z/OS data sets, and work with JES spool.

0 21148

= Programming Languages > C++

Executing C++ compiler on z/0OS

-+ ime.C

Batch
Menu Utilities Compilers Options Status Help
ISPF Primary ion Menu
Option > tso CXX 'DZ2S.C(PRIME)'
More:
TSO command (ngs Terminal and ~ parameters

listings

ist defaults

As the name suggests, XL C/C++ also provides a C++ compiler with the same portability and features of the C compiler. As the name suggests, XL C/C++ also provides a C++ compiler with the
same portability and features of the C compiler.

= Programming Languages > CLIST and REXX

CLIST REXX

REXX
This exec will print the
even numbers from 1 to 10
say 'Even numbers from 1 to 10'
DO WHI L >0 do n=1 to 10
if n//2=0
SET NUMBER=&NUM then say n
END end
WRITE &TOTAL say 'That"s all for now.'

* BOTTOM OF DATA

CLIST and REXX are two scripting languages available in the IBM enterprise environment. CLIST is the original language, while REXX is seen as its successor with more extensive capabilities.

These languages are often used to enhance and extend the TSO environment and system tools. REXX is also often used to create automated operations scripts for products such as IBM Syste
Automation and CA OPS/MVS.

0 23148 e <

= Programming Languages > CLIST and REXX

Y w——

SET
END
WRITE &TOTA

CLIST and REXX languages are normally run interpreted and not compiled, meaning that the source and executable are the same; however, a compiler is available for REXX.

BOTTOM

OF DATA ¥

REXX for CICS is also available and REXX can be used in the batch environment.

Both languages can consist of text statements that have very similar syntax and structure, but all REXX programs begin with a comment with the word REXX in it, for example:

REXX

0 24148

REXX

REXX
This exec will print the
n numbers from 1 to 10
say 'Even numbers from 1 to 10'
do n=1 to 10

if n//2
then sa

say 'That"s all for now.'

— Programming Languages > CLIST and REXX

Menu List Mode Functions Utilities Help Menu List M Functions Utilities Help

===> %myrexx Option ===>
settings erminal and user para
View) a\ urce data
Edit C e or change source da
utilities perform utility functio
Foreground Inte
Batch Submit j
Command
Dialog test)
LM Facility L inistr 3 tions
IBM Products gram me oducts
SDSF Spool i

1 workplace ISPF
My Rexx My Re

Place cursor on choice and press enter to Retrieve
command

0
1
P
3
4
5
6
7
8
)
S
1

Er ~ X to Terminate using log/list defaults

REXX and CLIST execs can hoth be run from the TSO command line or be called by other programs, such as ISPF.

Along with the ISPF definition elements, such as panels, skeletons, tables, and messages, this allows REXX and CLIST to be used extensively in the construction and modification of TSO/ISPF
based systems.

0 25148 | <

= Programming Languages > 4GLs

Print payment

Sselect menu

salary

4GL — Complex structure

In the mid-1980s, many fourth-generation languages were produced. These were seen as an improvement over third-generation languages because they handled much of the lower-level contrc
and structure.

They also enabled users to program by using either natural language-like statements or menu-driven interfaces.

0 26148 "

= Programming Languages > 4GLs

v

Interpreted code e Less efficient

4GL

v

Generated 3GL —)’ Compiled code

For many reasons, however, 4GLs did not replace 3GLs. Some of these reasons were:

* Many 4GLs produced code that had to be interpreted at runtime, which is much less efficient than compiled code.

« One or two languages did not become universal standards like COBOL and C, so skilled practitioners were not widely available.

« Many 4GLs had limited flexibility that made it difficult to use them for tasks not foreseen by the language creator.

« Some languages were better supported by their creators than others, and some were not kept up to date with the progress of the enterprise environment.

0 27148

= Programming Languages > 4GLs

Current 4GLs

Case tools f

Application

generator f

Full

f applications f

Reporting
tools

In the current environment, 4GLs and their descendants remain in use as computer-aided software engineering (CASE) tools, often with application generators for COBOL or C.

They are also employed as reporting tools as reporting is a very time-consuming task in a 3GL like COBOL bhut straightforward in many 4GLs.

0 28148

= Programming Languages > 4GLs

4GLs

* Focus
* Easytrieve
* SAS

* Others

There are still many organizations with applications that were built when 4GLs were most popular, where they continue to perform their function.

FOCUS and Easytrieve have been used to create complex systems, but their strength lies in their ability to quickly create complex reports on all types of data. Many installations write update
processes in a language like COBOL and pass the output to Easytrieve or FOCUS to produce reports.

SAS is a language environment that is designed for statistical analysis and reporting. It is very good at its designed task but is not suitable for general systems.

0 29748 "y

= Programming Languages > Object Orientation

The most modern design philosophy in programming is object orientation (OO).
OO is provided in the IBM enterprise environment by extensions to many existing 3GLs and the support of the new OO languages, Java, and C++,

Itis possible to use OO design and programming techniques with COBOL, PL/1, and REXX through the use of additional language facilities and
options, and by structuring code in an OO way.

The additional facilities have led to the labeling of the languages as OO COBOL and OO REXX, even though they are the same language and are
predominantly used to create programs in a procedural way.

It is also possible to provide OO interfaces to legacy programs in these languages by using CORBA through the facilities provided by CICS and
WebSphere Application Server.

You have seen how C++ is supported under z/OS. A compiler is provided and executable modules are produced and run in a similar fashion to C.

Java is also supported but its implementation is very different and it does not produce machine-level executable modules that can be run like those
compiled and linked from other languages.

= Programming Languages > Java

zIOS
UNIX Systems Services
Db2 as Stored Procedures WebSphere Application Server
Java JVM
CICs Batch Jobs
IMS

Java, a language that is owned and defined by Sun Microsystems, is designed to be completely portable between all systems on which it is implemented.

This portability requires the implementation of a standard Java Virtual Machine (JVM) for Java-compiled byte code to run on. The implementation of the JVM is the responsibility of the host ope
system's builder.

Java has become a strategic programming language on z/OS. IBM supplied JVMs and Toolkits on z/OS allow Java programs to run in the containers above. There are other software systems t
are also capable of running Java.

0 31/48 e <

= Programming Languages > Java

IBM is a registered trademark of the IBM Corp.
$ java -version
java version "1.6.0"

A version of the Java System Development Kit (SDK) is available for UNIX Systems Services, giving access to all the Java development tools.

With the portability of Java, development can take place on another platform and be moved to the mainframe for execution.

0 32148

= Programming Languages > Java

The adoption of Java as a strategic language by IBM opens up IBM enterprise systems for use in mainstream Internet processing. The implementation is standard with all standard-class librari
available, and the ability to create, compile, or run any Java process.

This simple "hello world" example can be compiled and run in exactly the same way under UNIX Systems Services as it would under any Windows or UNIX system.

0 33748 e <

= Programming Languages > Java

JCICS

Access to CICS services

CICS TS
IMS TM Java API for IMS TM
JZ0S
Access to IMS
Mainframe data transaction services
and services
e Java API for IMS DB
JDBC Db2 Access to IMS databases

APl used to access databases such
as Db2, CA Datacom and IMS

A number of standard and specific java interfaces and classes are available so that java applications can access the following:

¢ 7/OS data and services
« CICS services

« Db2 database content
« IMS database content

0 34148

= Programming Languages > The Compilation Process

You have now looked at the following programming languages and methodologies:

- Assembler

- COBOL

-PLI

-Cand C++

- CLIST and REXX
-4GLs

- Object-orientation
- Java

You will now explore the process of compiling a source program, binding it and creating an executable module.

You will also examine the integrated language environment and stored procedures.

= Programming Languages > Precompiler

| L0 | maw
| 01011010011010

01100010110010

10100101101001

10010110101010
CICS translator Db2 precompiler

COBOL program

» COBOL program

Starting with a data set containing source, for example, a COBOL program, the first steps may involve one or more translators or a precompiler. These programs change the structure and langu
used by subsystems like CICS or Db2 into the source language's call syntax. This produces a source file that contains only standard language statements. For example, CICS:

EXEC CICS

END EXEC.

is translated to CALL "DFH "

0 37148 »

== Programming Languages > Compiling

The second step is the compiler accepting a source program, checking it for syntax, and producing an object module that contains machine-level code for all of the statements in the source pro

COBOL program

o

CICS translator

01011010011010
01100010110010
10100101101001
10010110101010

Db2 precompiler

Compiler

v

Object

V' N

P COBOL program

Programming Languages > Binding

EEm | munm
01011010011010

01100010110010

10100101101001

10010110101010

CICS translator Db2 precompiler
COBOL program » coBoL program

_—

— Compiler

—— v

Application objects ———

— III
Object

o +

—————

System objects » O-o » Executable

Binder

The third step is to bind the object module into an executable module - a load module, or program object. This process is sometimes called link editing.
In the bind process, the z/OS binder locates and includes any references to external modules, such as other applications, language, and system modules.

These references may be resolve during the bind process, and external module may be statically bound into the executable module. Alternatively, these references could be resolved at executi
time, and external modules loaded when needed. Compiler and binder options determine which.

0 39748 e <

Programming Languages > LE

Pre-LE LE

1=} B

n o

COBOL program PL/I program COBOL program PL/I program

v v v

- objects -

Compiler Compiler Compiler Compiler

COBOL i ‘ PLI
objects v objects ‘
— Link C=€ Link G= — QY Y Link Co=€
’ COBOL executable J L PL/I executable

COBOL executable PL/I executable

The Language Environment (LE) contains standard objects and interfaces for other languages to refer to. Before the implementation of the LE in the 1990s, each language provided its own set (
low-level modules for interface-to-systems resources and other subsystems, like CICS and Db2.

With LE, the languages now refer to these common interfaces and only LE needs to be maintained and enhanced for changes to the underlying system and subsystems.

040/48 v <

= Executable Modules > Executable Modules

Libraries a

Batch job TSO session

@ Executable modules — Qg

Web interface Transaction system

After producing a program in one of the available languages, and performing the compile and link required, you will have an executahle module.

This module lives in a data set commonly called a library, which may not be on the same machine on which it was created. Due to the uniformity of the IBM enterprise environment, it may have
distributed to one or more test or production environments. The module then becomes available for execution by batch jobs, transaction systems like CICS, TSO sessions, or through one of the
interfaces.

0 41148 <

= Executable Modules > Executable Modules

Security

Libraries g

TSO session

Batch job

@ Executable modules

Web interface

Transaction system

Security Configuration Manager
For most executable modules, a security system such as RACF controls the processes and users that can access or execute the module.

The use of a Software Configuration Manager (SCM), such as CA Librarian or SCLM, controls update and maintenance of the modules, and may provide distribution and installation functions a

multiple systems.

0 42148

= Executable Modules > Stored Procedures

Stored procedure

Libraries

—————

Executable modules

One type of module that has a higher degree of control and integration is the Db2 stored procedure. These modules are created like normal modules by using compiles and links, but they are al
defined to Db2. They are then stored in Db2-controlled libraries and accessed through Db2 via the SQL interface.

Although any process can use them in this way, stored procedures are mostly used for processes that update or summarize data in the Db2 database, or functions commonly used with the Db2
database.

0 43148 R

Summary

Programming Capabilities
In this module, you explored the most commonly used programming languages in the IBM enterprise environment.

You should now be able to:

* Recognize Highlights in the Timeline of Programming Language Development

« |dentify Commonly Used Programming Languages in the IBM Enterprise Environment
« Recognize Fourth Generation (4GL) Languages

o Define the Integrated Language Environment

« |dentify Stored Procedures

