TNTErsKiLL
learning

Using Cursors to Reference Table Data

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

0 1/35

Objectives

Using Cursors to Reference Table Data
In this module you will see how cursors can be used to identify and retrieve one or more rows of data from a result table.

After completing this module you will be able to:

« |dentify the Types of Cursors Available and State Their Purpose
* Describe the Steps Required When Using Cursors
o Determine the Attributes of a Cursor

What are the benefits of a

What are the benefits of
scrollable cursor?

using a cursor?

When may | need to determine

What is the process used
the attributes of a cursor?

to use a cursor?

What are row and rowset
cursors and how do they differ?

In the modules so far, you have seen how the SELECT statement can be used to create a result table based on the criteria specified. With your application program you may want to only process a
subset of these records, which is possible using the cursor to locate the relevant record to begin with.

In this course you will look at the types of cursor that can be used and how they are invoked.

0 3135

EXEC SQL
DECLARE MYCURS CURSOR FOR
SELECT EMP_ID, LASTNAME, DEPT_ID
FROM EMPLOYEE This defines the cursor and the
WHERE DEPT_ID LIKE = 'TST%' result table it is linked with.
FOR FETCH ONLY
END-EXEC.

EXEC SQL
OPEN MYCURS

END-EXEC. The cursor then needs to be opened,

which will build the result set.

EXEC SQL

FETCH MYCURS

INTO :EMP-ID, :L_NAME, :DEPT_ID In this example the cursor is opened
END-EXEC. using the FETCH statement and the

content of a row will be retrieved.

There are two types of cursors, a rowset-positioned cursor and a row-positioned cursor.
A rowset-positioned cursor retrieves zero, one, or more rows at a time, as a rowset, from the result table into host variable arrays. This type of cursor is discussed later in this module.

For now we will focus on the row positioned cursor. This type of cursor is a pointer to a particular row in a result set. It points to the next row to be passed to the application program. All that the
application program has to do to return a row is ask for the row and nominate some host variables to put the data into.

0 4135 <

= Cursors > Cursors

EXEC SQL
DECLARE EMP_CURSOR CURSOR FOR
SELECT EMP_ID , NAME
FROM EMPLOYEE
WHERE NAME LIKE :SEARCH-NAME
END-EXEC.

MOVE SEARCH-STRING TO SEARCH-NAME.

EXEC sSQL
OPEN EMP_CURSOR
END-EXEC.

Here is another example of the code used when
referencing a cursor. In a COBOL program, this code
would reside in the data or procedure division.

The process with using a row positioned cursor is as follows:

« Declare the cursor

« Open the cursor; this causes Db2 to build the result set

« Fetch each row one at a time and then do something with it
« Close the cursor

You will look at each of these statements in turn as they are coded in a COBOL statement.

0 5/35

= Cursors > Declare the Cursor

EX SOL
DECLARE EMP_CURSOR CURSOR FOR
SELECT EMP_ID , NAME
FROM EMPLOYEE
WHERE _NAME LIKE :SEARCH-NAME
END-EXEC.

MOVE SEARCH-STRING TO SEARCH-NAME.

EXEC sSQL
OPEN EMP_CURSOR
END-EXEC.

The DECLARE CURSOR statement defines the name of the cursor and the SELECT statement associated with it.
With this statement you are telling Db2 that each row in the result set will be referenced by EMP_CURSOR.

Declaring the cursor does not cause the data to be selected from the table.

0 6/35

EXEC SQL

DECLARE EMP_CURSOR CURSOR FOR
SELECT EMP_ID , NAME

FROM EMPLOYEE
WHERE NAME LIKE| :SEARCH-NAME

MOVE SEARCH-STRING TO SEARCH-NAME.

EXEC SQL
OPEN EMP_CURSOR

The OPEN statement opens the cursor in readiness to process the rows from its result table. It is at this time that the result table is actually created, using the current values of any host variables
that are specified in the SELECT statement.

In this example, a COBOL MOVE statement is being used to define a value (SEARCH-STRING) to the host variable SEARCH-NAME that appears in the DECLARE cursor SELECT statement
area.

07/35 e <

= Cursors > Fetch Each Row

MOVE SEARCH-STRING TO SEARCH-NAME.

EXEC SQL
OPEN EMP_CURSOR
END-EXEC.

EXEC sSQL
FETCH EMP_CURSOR

INTO :EMP-ID, :NAME
END-EXEC.

With the cursor now opened, we need to instruct the SQL on the information to be retrieved. This is achieved using the FETCH statement.

The FETCH statement positions the cursor on the first row of the result table and retrieves the information into the host variables specified, in this case EMP-ID and NAME.

0 8/35

= Cursors > Fetch Each Row

EXEC SQL
OPEN EMP_CURSOR
END-EXEC.

EXEC SQL
FETCH EMP_CURSOR
INTO :EMP-ID, :NAME
END-EXEC.

- 0|

do something with the data

EXEC sSQL

FETCH EMP_CURSOR
INTO :EMP-ID , :NAME
END-EXEC.

LL1F SQLCODE_NOT = 100'

methi i wrong!
END-IF.

Usually, FETCH statements are performed in a loop until all rows are processed or a certain number of rows are processed.
The code shown here is an example on how this can be achieved.
Note the following:

e FETCH is like a READ
* SQLCODE 100 is like END OF FILE

09/35

= Cursors > Close the Cursor

EXEC SQL
DECLARE EMP_CURSOR CURSOR FOR
SELECT EMP_ID, NAME
FROM EMPLOYEE
WHERE NAME LIKE :SEARCH-NAME
END-EXEC.

MOVE SEARCH-STRING TO SEARCH-NAME.

EXEC SQL
OPEN EMP_CURSOR
END-EXEC.

EXEC SQL
CLOSE EMP_CURSOR
END-EXEC.

When you have completed processing the data, you will need to enter a CLOSE statement to close the cursor. When this occurs the temporary result table will be destroyed. The only way to
access the data after the cursor is closed is to open it again.

Note that closing cursors as soon as possible can improve performance.

0 10/35 PO

= Cursors > Cursors

EXEC SQL
DECLARE EMP_CURSOR CURSOR FOR
SELECT EMP_ID, NAME
FROM EMPLOYEE
WHERE NAME LIKE :SEARCH-NAME
END-EXEC.

MOVE SEARCH-STRING TO SEARCH-NAME.

EXEC sSQL
OPEN EMP_CURSOR
END-EXEC.

EXEC SQL
CLOSE EMP_CURSOR
END-EXEC.

Any open cursors will be automatically closed when the program ends. Other events that can result in the cursor being closed are:

« an abnormal termination of the batch job or online task

e SQL commit (although a WITH HOLD parameter can be placed on the DECLARE CURSOR statement to prevent this)
¢ Rollback

¢ CICS and IMS SYNCPOINT

« SQLCODE -911 or -913 (deadlock or timeout)

0 11/35

EXEC SQL
DECLARE EMP_CURSOR CURSOR FOR
SELECT NAME, SALARY
FROM EMPLOYEE
a RCH-NAME

END-EXEC.

EXEC SQL
UPDATE EMPLOYEE
SET NAME = :NAME
WHERE CURRENT OF EMP_CURSOR
| END-EXEC.

EXEC SQL

DELETE FROM EMPLOYEE

WHERE CURRENT OF EMP_CURSOR
| END-EXEC

You can also use the cursor to indicate rows where an update will take place, or a row deletion will occur.

In the example shown here, the FOR UPDATE in the DECLARE CURSOR statement indicates that the NAME column should be updated. After the program has executed a FETCH statement to
retrieve the current row, the UPDATE statement shown here can be used to modify that row's NAME data.

In the example at the bottom of the page, the DELETE statement will delete the row on which the cursor is currently positioned.

0 13/35 e <

= Cursors > The Cursor

DECLARE EMP_CURSOR CURSOR FOR

SELECT EMP_ID,SALARY

FROM EMPLOYEE WHERE DEPT_ID = :DEPT-ID
FOR UPDATE OF SALARY

END-EXEC.

EXEC SQL I

MOVE TPO-DEPT-ID TO DEPT-ID.
EXEC SQL
OPEN EMP_CURSOR
END-EXEC.
EXEC SQL
FETCH EMP_CURSOR INTO :EMP-ID, :SALARY
END-EXEC.
PERFORM UNTIL SQLCODE NOT = 0
EXEC SqQL
UPDATE EMPLOYEE
SET SALARY=SALARY*1.1 WHERE CURRENT OF EMP_CURSOR
END-EXEC.
write the new and old salary to a file
EXEC SQL
FETCH EMP_CURSOR INTO :EMP-ID, :SALARY
END-EXEC.

Here is a program sample that reads through a table and updates all the salaries in a department (:DEPT-ID) with a 10% raise. Look through the code and notice that all four steps in cursor
processing are here:

« DECLARE cursor

« OPEN the cursor

¢ FETCH information

e CLOSE the cursor when finished

0 14/35 e

Scrollable Cursors > Scrollable Cursors

EMPLOYEE TABLE
EMP_CURSOR :EMP-ID
EMP_ID EMP_NAME -
Vi V1
V2 V2
V2
V3 — > V3 V3

For many rows:

EXEC sQL " From Version 7 of DB2 onwards, cursors
DECLARE EMP_CURSOR CURSOR FOR SELECT EMP_ID can be scrolled forwards or backwards.
INTO :EMP-ID
FROM EMPLOYER
END EXEC

EXEC SQL
OPEN EMP_CURSOR
END EXEC

From Version 7 of Db2 onwards, cursors can be scrolled forwards or backwards. With previous versions of Db2, cursors could only be scrolled or processed sequentially forwards.

You will now look at declaring and opening a scrollable cursor, fetching and moving within the cursor, and the difference between sensitive and insensitive cursors.

Click Play to see how cursor use has changed.

0 16/35 T —

DECLARE C1 SENSITIVE@ CURSOR
FOR SELECT STAFF_ID,NAME,LOCATION
FROM EMPLOYEE

The temporary result table is created
in the work file database, and will be

OPEN C1
e dropped when the cursor is closed.

EMPLOYEE TABLE TEMPORARY TABLE
STAFF_ID NAME POSCODE POSDECS LOCATION STAFF_ID NAME LOCATION
100 BLACK AL DBA SYDNEY 100 BLACK SYDNEY
—
400 SMITH B2 OPERATOR ~ NEW YORK 400 SMITH NEW YORK
300 JONES Al SYS ADMIN LONDON 300 JONES LONDON

To open a cursor that will use scrolling, the keyword SCROLL is used on the DECLARE CURSOR statement.

When the DECLARE CURSOR...SCROLL and OPEN CURSOR are executed, unless the cursor is against a single base table, a temporary table in the work file database is created to hold the
result set.

Click Play to see how the keyword SCROLL is used in the DECLARE CURSOR statement.

0 17135 C

FETCH cursor syntax

—» | NEXT

—» | PRIOR

—» | FIRST EXEC SQL
FETCH ABSOLUTE +3 MYCURS INTO :HV_NAME
L | wasT END-EXEC
EXEC SQL
FETCH————» | CURRENT FETCH RELATIVE 2 MYCURS INTO :HV_SALARY
END-EXEC
——» | BEFORE EXEC SQL
FETCH AFTER FROM MYCURS
» AFTER END-EXEC

—» | ABSOLUTE n

> | RELATIVEn Will fetch the row that is n rows

away from the last row fetched.

With the cursor having been declared as a scrollable cursor, the FETCH statement can now be used to define where the cursor is to be positioned in the result table, before it begins processing.
The information shown here represents the SQL parameters that allow the cursor to be repositioned for a row-positioned cursor.

Mouse-over the syntax for a description of that parameter.

0 18/35 e <

DECLARE Cm SCROLL CURSOR

FOR SELECT STAFF_ID,NAME,LOCATION
FROM EMPLOYEE

. Data in the EMPLOYEE table is deleted in the
OPEN C1 second row, but the cursor is unaware of the
e update as, due to the INSENSITIVE flag, the
temporary table is not updated accordingly.

EMPLOYEE TABLE TEMPORARY TABLE
STAFF_ID NAME POSCODE =~ POSDECS LOCATION STAFF_ID NAME LOCATION
100 BLACK Al DBA SYDNEY . 100 BLACK SYDNEY
H | T 400 SMITH NEW YORK
300 JONES = Al SYSADMIN LONDON 300 JONES LONDON

When using scrollable cursors you must assign the cursor a sensitivity level. This describes whether the result table is updateable or read-only. Until now, we have left our examples blank when

referring to scrollable cursors, which indicates that they have been using a default value of ASENSITIVE. This is a flexible sensitivity level that will perform as an update, or read-only cursor
depending on the environment it is dealing with.

An example of using an INSENSITIVE cursor is shown here and indicates that it is read only. This means that the cursor result table will not display any changes such as inserts, updates or
deletes made to the base data.

Click Play to see how the INSENSITIVE attribute works.

0 19/35 C e £

e
DECLARE Cm DYNAMIC SCROLL CURSOR
FOR SELECT STAFF_ID,NAME,LOCATION
FROM EMPLOYEE

cae Data in the EMPLOYEE table is deleted in row
OPEN C1 2 and the cursor is aware of the update as the
S result table is updated accordingly.

EMPLOYEE TABLE RESULT TABLE
STAFF_ID NAME POSCODE = POSDECS LOCATION STAFF_ID NAME LOCATION
100 BLACK AL DBA SYDNEY 100 BLACK SYDNEY
300 JONES AL | SYSADMIN LONDON 300 JONES LONDON

The SENSITIVE attribute is used when you want the cursor result table to be aware of any changes made to the base table (such as an update or delete). To further fine tune this feature, a
STATIC or DYNAMIC parameter is usually coded alongside it (although if not supplied, then DYNAMIC is the default).

DYNAMIC specifies that following the opening of the cursor, the size of the result table might change as a result of inserts or deletes being performed on the base table. These changes may be
through the same application process associated with the cursor, or as a result of a commit process from another application. STATIC is used when you do not want the cursor result table

modified to reflect actions occurring in the base table. This means that an INSERT in the base table will not be reflected in the cursor result table, and an UPDATE or DELETE will display as a
hole in the cursor result table.

020/35 C e (£

DECLARE MYCURS SENSITIVE STATIC SCROLL

FETCH INSENSITIVE

- The cursor is updateable

- Recognizes updates or deletes within cursor

- Updates and deletes made to the base table
outside of the cursor are not displayed

- Any inserts are not recognized

DECLARE MYCURS SENSITIVE STATIC SCROLL

FETCH SENSITIVE

- The cursor is updateable

- Recognizes updates or deletes within cursor

- Committed updates and deletes inside and
outside of the cursor are recognized

- Any inserts are not recognized

DECLARE MYCURS INSENSITIVE SCROLL

FETCH INSENSITIVE

- Cursor is read-only

- Cursor result table does not recognize
updates or deletes in base table

A number of DECLARE CURSOR and FETCH sensitivity combinations can be used, depending on your requirements. The table here provides details on how data is managed with these
commonly used combinations.

021/35

| know how to declare, | can describe the characteristics
open and close a cursor. of a scrollable cursor.

| can use a FETCH statement to
retrieve data from a cursor
SELECT statement.

| know that cursors can have
different sensitivity attributes.

A scrollable cursor is closed in the same way as a non-scrollable cursor and any temporary table is cleaned.

To summarize: a scrollable cursor gives more flexibility at the cost of complexity; you fetch into host variables and can update and delete as with a non-scrollable cursor, but you can also revisit or
skip cursor rows.

Whether you see the effect of earlier or other updates in those rows will depend on your use of the ASENSITIVE, SENSITIVE, and INSENSITIVE keywords.

0 22135 e <

The row-positioned cursor discussed so far performs a fetch on one row at a time and then may, or may not be repositioned for processing other rows. Depending on the result you are aiming to

Program

FETCH

Row-positioned cursor

DB2 result table

FETCH

ROW 1

Program

Rowset-positioned cursor

FETCH

ROW 2

ROW 3

achieve, a multi-row fetch may be more appropriate using a ROWSET positioned cursor.

FETCH
5 rows

In this section you will see the similarities and differences between row-positioned and rowset-positioned cursor.

024/35

DB2 Result Table

= ROWSETS > ROWSET Procedure

DECLARE MYCURS CURSOR

WITH ROWSET POSITIONING FOR
SELECT EMP_ID, L_NAME

FROM EMPLOYEE

FETCH ROWSET
STARTING AT ABSOLUTE -2 FROM MYCURS
FOR 5 ROWS

INTO :EMP :LNAME;

CLOSE MYCURS

The process involved with dealing with rowset-positioned cursors is the same as row-positioned cursors.

1. The rowset cursor needs to be declared
2. The rowset cursor needs to be opened

3. Multiple row fetch statements are invoked
4. The rowset cursor is closed

0 25135

== ROWSETS > Receiving Multi-Row Data

01 OUTPUT VARS.
05 L_NAME OCCURS 6 TIMES.
49 L_NAME_LGTH PIC S9(4) USAGE COMP.
49 L_NAME_DATA PIC X(50).
05 EMP-ID PIC S9(9) COMP OCCURS 6 TIMES.

PROCEDURE DIVISION.

EXEC SQL
DECLARE MYCURS CURSOR WITH ROWSET POSITIONING FOR
SELECT L_NAME, EMP_ID
FROM EMPLOYEE

END-EXEC.

EXEC SQL
OPEN MYCURS

END-EXEC.

EXEC SQL
FETCH NEXT ROWSET FROM MYCURS FOR 6 ROWS
INTO :L_NAME, :EMP_ID

END-EXEC.

Using a rowset cursor, the associated FETCH statement copies the ROWSET column values into one of the following:

« Host variable arrays that are declared in your program as shown in the COBOL example above, or into
« Dynamically-allocated arrays whose storage addresses are put into an SQL descriptor area (SQLDA)

0 26135

== ROWSETS > Multiple Row Fetch Statements

FETCH ——

NEXT ROWSET

PRIOR ROWSET

FIRST ROWSET

LAST ROWSET

CURRENT ROWSET

ROWSET STARTING AT ABSOLUTE vn

ROWSET STARTING AT RELATIVE vn

FETCH ROWSET STARTING AT ABSOLUTE 25
FROM MYCURS FOR 10 ROWS
INTO :ADDR, : SUBURB, :ZIP

FETCH NEXT ROWSET
FROM CRL FOR 25 ROWS
INTO :NOTES

Will fetch the rowset whose first row is the row number
indicated by either a host variable (v) or an integer (n).

Positioning of the rowset cursor requires similar parameters to those discussed previously.

Mouse-over the code for a description of its purpose.

0 27135

= ROWSETS > Modifying Data using ROWSET Positioning

Updating an individual line within a ROWSET

UPDATE EMPLOYEE
SET BONUS = YES
FOR CURSOR MYCURS
FOR ROW 10 OF ROWSET

Updating all lines within a ROWSET

UPDATE CUST
SET STATUS = VIP
WHERE CURRENT OF MYCURS

Just because you may have fetched multiple rows of data using rowset doesn't mean that you can't update specific rows.

In the top example, an UPDATE statement references a specific row within the ROWSET to update. The lower example will update all rows in the ROWSET.

0 28135

== ROWSETS > Benefits of Using ROWSET

\‘ .
—
Reduced CPU usage Dollars saved Greater application
efficiency

You should evaluate your existing code to determine whether multi-row fetch using ROWSET is an option as it provides the following benefits:
« The number of operations required to fetch multiple rows of data is reduced using ROWSET, which greatly reduces CPU usage

« The performance in your application program will vary depending on the SELECT and FETCH operations and the amount of data being accessed, but generally it will be improved using
ROWSET

0 29135 e«

SQLCA

SQLWARN1L Indicates a scrollable or non-scrollable cursor.

Displays details relating to the sensitivity of the cursor, For example,

LI whether it is insensitive (1), sensitive static (S), or sensitive dynamic (D).

Indicates the functionality of the cursor; that is whether it is read-only, or

SOLWARDO can be used for deleting and updating.

SQLERRD(1) These two fields contain details about the number of rows in the result table of a

SQLERRD(2) cursor when the cursor is positioned after the last row (when SQLCODE = 100).
These codes will not be set for dynamic scrollable cursors.

SQLERRD(3) If the SELECT statement of the cursor contains a data change statement,

then this field will display the number of rows in the result table.

e

With so many attributes and settings that can be defined for a cursor, there may be situations where you need to identify exactly what these specifications are.

After you open a cursor, you can check the SQLWARN and SQLERRD fields of the SQL Communications Area (SQLCA) by invoking the assembler subroutine DSNTIAR from your program, or by
including the GET DIAGNOSTICS SQL statement in your code.

The table displayed here indicates the SQLCA fields containing some cursor-related data.

0 30/35 e <

