mNTersKiLL
learning

Writing a Db2 COBOL Cursor Update Program

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

| 0 1124

Objectives

Writing a Db2 COBOL Cursor Update Program

In this module you will be building on your COBOL Db2 program. You are going to change your program to use a cursor and then update the
cursor.

After completing this module you will be able to:

« Write a Db2 COBOL Program Using a Cursor
« Write a Db2 COBOL Update Program Using a Cursor

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

Precompiled
source

=X

Executable {

module

\

I |

|

’ Design Wiite code Precompile Compile J’ Link Bind Run
L(Source ‘ ‘ l
code Report
v
’ DCLGEN COBOL
structures

The process of building a cursor program is the same as for any Db2 program. Only the program logic and Db2 structures are different.

| 0 3124

' I)
DEPARTMENT Table (EMPLOYEE Table

DEPTNO (Primary key) EMPNO (Primary key)
DEPTNAME FIRSTNAME
MGRNO MIDINIT
ADMRDEPT LASTNAME
LOCATION WORKDEPT
PHONENO
HIREDATE
JoB
EDLEVEL
SEX
BIRTHDATE
SALARY
BONUS
COMM
DEPTNO

This exercise will carry on from the previous course where we used the two tables shown here.

We are going to list the contents of the DEPARTMENT table in preparation for updating the MGRNO field. This update will only need to occur if the WORKDEPT value in the EMPLOYEE table is
equal to the DEPTNAME value in the DEPARTMENT table.

Because our SQL statements will need to process multiple rows, we are going to use a cursor.

| 04/24 O <

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

RIKINC LAGE E

EXEC SQL
INCLUDE DEPAR
END-EXEC.

EXEC SQL
INCLUDE EMPEE
END-EXEC.

EXEC SQL
INCLUDE SQLCA

END-EXEC.

This is the simple program you have already used which performs three SQL statements.

You will be using these tables and the Db2 interface is the same, so you do not need additional DCLGENS.

Scroll the window to view all the code.

| 05/24

LRNCDO004

Open Process
—_— Fetch row
cursor M cursor
7 sQL Yes N Yes ~ sQL
. ermor - . ermor
1 No
No
Open . -~ Endof ™ Yes Close
report file P . cursor report file
l No
[wite
Abend report file
L

There are some changes in the design of your program.
In your simple program you just issued an SQL statement. Now you must open a cursor and then loop through the cursor, fetching each row. When you have done so, you will close the cursor.
Note: You must also cater for an error when you open the cursor.

Click Play to see an example of this concept.

| 0 6/24 (4

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

00-OPEN-CURSOR.
EXEC SQL
WHENEVER SQLERROR GOTO 390-SQL-ERROR
END-EXEC.

EXEC SQL

OPEN CURR-DEP
END-EXEC.
PEN-FILES

PEN OUTPL

300-PROCESS-CURSOR.

PERFORM 310-FETCH-AND-WRITE]
UNTIL END-OF-TABLE.

310-FETCH-AND-WRITE.

Here is the structure of your COBOL program. It has been modified by adding extra paragraphs for cursor processing, and some extra flag variables for program control.
The first item you are going to add is the cursor, which must be declared in working storage.

Scroll the window to view all the code.

| 07/24

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

05 WS-DEPARTMENT-RECORD. _
10 FILLER PIC X(
VALUE SPACES.

10 WS-DEPARTMENT-NO

10 FILLER PIC X LUE SPACES.
10 WS-DEPARTMENT-NAME PIC

10 FILLER PIC X) VALUE SPACES.

EXEC SQL
declare curr-dept cursor form
SELECT DEPTNO, DEPTNAME FROM DEPARTMENT
END-EXEC.

LINKAGE SECTION.

Step 2 of 3
You insert the SQL into the working storage section using an EXEC SQL block, but you must declare it as a cursor. You will declare it as a cursor named CURR-DEPT.

Type DECLARE CURR-DEPT CURSOR FOR and press Enter.

| 08/24

00-OPEN-CURSOR.
EXEC SQ
WHENEVER SQLERROR GOTO 39
END-EXEC.

EXEC_SQL
OPEN_CURR-DEPT]
END-EXEC.

200-OPEN-FILES.

CURSOR.
QL
CURR-DEPT]
END-EXEC.

-ABEND.
DIVIDE 1 BY WS-ZERO GIVING WS-ZERO.

9900-EXIT.
EXIT.

Step 3 of 3
Now you will code the OPEN and CLOSE cursor statements. Cursors are opened and closed by name. Note that Db2 can generate an error on an open cursor, so be sure to check the status or
implement a WHENEVER clause, as was done here.

Type OPEN CURR-DEPT and CLOSE CURR-DEPT and press Enter.

That is incorrect
| 0 8124 TryAgan <

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

Open
cursor

v
s AN

Yes

LRNCDO004

Process
cursor

—

Yes

Fetch row L

v
PN

v

lNo

Open
report file

(I

\Write error

Abend

error

No

Yes

Write
report file

l

Close
report file

Now you can code the loop to fetch and process each row, and also to sense when you have processed all rows and exit the loop.

| 0 9/24

-PROCESS-CURSOR.

PERFORM -FETCH-A
-OF-TABL

DCLDEPARTMENT.
-FETCH-NEXT-ROW.

PERFORM)J-WRITE-RECORD
END-IF.

-FETCH-NEXT-ROW.
EXEC_SQL
FETCH CURR-DEPT]
INTO :DEPTNO,
|: DEPTNAME!
END-EXEC.

DEPARTMENT-NO.
(OV=D E PTNAM DEPARTMENT-NAME

Step 2 of 2

FETCH cursor-name
INTO :host-varl
:host-var2

You know the cursor is called CURR-DEPT, the host variable is DEPTNO, and the structure is DEPTNAME. Type the FETCH statement using the format here, and press Enter.

That is incorrect
| 0 10/ 24 TryAgain <)

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

Here is your completed program. Now you will run it and see the output.

Scroll the window to view all the code.

| 0]1/24

= Writing a Db2 COBOL Cursor Program > Writing a Db2 COBOL Cursor Program

You have produced a list of all the departments held in the department table.

| 0 12/24

LRNCDO05

v
Open Fetch o | SQL get min
cursor row " employee
SQL Yes SQL Yes <_ﬁ - SQL
~._emor_~ ~._eror?_~ ~._eror?_~
l No ‘ No l No
Open _~ Endof ~._No Update
report file “._cursor_ cursor
L Tves
Process > Yes ~ sQL No Write report
cursor l ~_ermor?_~ files
T v
Close Close
$— P report files Write error P Abend ‘
/ Stop

The next step in our exercise is to update the MGRNO column in each row of the DEPARTMENT table, but only if the WORKDEPT value in the EMPLOYEE table is equal to the DEPTNAME value
in the DEPARTMENT table.

The value used in the update process will be obtained from the minimum EMPNO value relating to each department.

If for some reason, departments do not have any employees (could be a new structure being set-up, or a redundant department), you will need to set the MGRNO value to '000000'.

| 014/24 e <

= Writing a Db2 COBOL Cursor Update > Writing a Db2 COBOL Cursor Update

05 WS-NULL-IND PIC S9(4) USAGE COMP.
88 NULL-SET VALUE -1.

10 F LEF JE_SPACE

10 WS-DEPT-MGRNO PIC X(6).]
10 FILLER PIC X(54) VALUE SPACES.

Your program is shown here with a few changes. Fields have been added: one to hold a null indicator and others to display the updated MGRNO.
You must also change the way you declare the cursor and code the update logic.

Scroll the window to view all the code.

| 0 15/24

In the next part of our exercise, you need to obtain the minimum EMPNO value relating to each department. The following is the additional criteria required for this statement:
« It needs to be retrieved from the EMPLOYEE table and stored in the :EMPNO host variable.
« A WHERE statement needs to be added so that the data is only stored if the WORKDEPT value in the EMPLOYEE table is equal to the :DEPTNO host variable that was set in an earlier
SELECT statement.

An example of what is required is shown here.

| 017/24 S«

EMPLOYEE table DEPARTMENT table

-
{ WORKDEPT column DEPTNO column 1
A0O A0COD
LL-IND
:DEPTNO A0O AO01 (no match) = NULL
Co1 Co1
A0O D21
\ J
D21
\ J

We also need to cater for a NULL condition if there are no employee rows whose WORKDEPT value matches :DEPTNO. In this situation we can provide a null indicator variable as shown above.

| 018/24 2 <

FROM_EMPLC
ERE_WOR

END-EXEC.

0-WRITE-RECORD.
MOVE DEPTNO DEPARTMENT-NO.
MOVE DEPTNAME-TEXT TO EPARTMENT-NAME.
MOVE MGRNO TO WS-DEPT-MGRNO.

MOVE EPARTMENT-RECORD TO PRINT-AREA.
WRITE REPORT-RECORD AFTER 1.

EXIT.

Step 1 of

INTO :EMPNO :WS-NULL-IND
FROM EMPLOYEE
WHERE WORKDEPT = :DEPTNO

Type the above SELECT statement into the program and press Enter.

That is incorrect
| 0 19/24 TryAgan £ |

>OBOL Cursor Update

lw)

25-UPDATE-ROW.
EXEC SQL
SELECT MIN(EMPNO)
INTO :EMPNO :WS-NULL-IND
FROM EMPLOYEE
WHERE WORKDEPT = :DEPTNO
END-EXEC.
IF NOT NULL-SET
MOVE EMPNO TO MGRNO
ELSE
MOVE '000000' TO MGRNO
END-IF.

EXEC SQL
UPDATE DEPARTMENT
MGRNO_=_:MGRNO
current ot _curr-dept

330-WRITE-RECORD.
MOVE DEPTNO WS-DEPARTMENT-NO.
MOVE DEPTNAME-TEXT WS-DEPARTMENT-NAME.
MOVE MGRNO TO WS-DEPT-MGRNO.

Step 4 of 4
You only want to update the current cursor row. To do this, you must restrict the update using a WHERE CURRENT OF cursor-name clause.

Your cursor name is CURR-DEPT.

Type the WHERE statement above and press Enter.

| 0 19/24 Try Again <

30L Cursor Update

You have now completed your cursor update program. You can browse the complete program above.
If you precompile, compile, link, and bind the program, it is now ready to run.

Scroll the window to view all the code.

| 0 20124

