NTErsKitLL
learning

REXX Conversational and Variable Management Instructions

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2021

0 1124

Objectives

REXX Conversational and Variable Management Instructions

In this module, you will explore the coding and use of conversational and variable management keywords in REXX.

You will look at the external data queue and its instructions, and see how variable templates can be used to assign variable values.

After completing this module, you will be able to:

« |dentify Conversational and Variable Management Keyword Instructions
« |dentify How to Use and Manage the External Data Queue
« Define Simple and Complex Variable Templates to Assign Variable Values

REXX keyword instructions

Conversations with REXX

Variable management

Logic flow

Execution control

REXX provides a range of keyword instructions to control execution flow within an exec and provide various services to programmer and user. Some instructions also provide other instructions that
are nested within them.

A REXX keyword instruction must be the first token in a clause and is not case dependent. For example, an instruction entered as "do" is the same as "DO".

REXX instructions can be used to manage variables, provide logic functions, control execution and processing of REXX and other programs, and manage conversations in REXX.

03/24 <

= Conversational Instructions > Three Instructions

~ Conversational keywords

SAY

PULL

PARSE

The PULL instruction reads the next line in the program stack or, if that is empty, from the terminal,
and translates it to uppercase while assigning it to variables according to a variable template.

Conversational instructions help you manage conversations in REXX. Listed above are the three main REXX conversational instructions.

Mouse-over each instruction for a description.

04/24

say 1 green bottle standing on the wall

say /* displays a blank line */
say 'Hello'

x=3; y=4,;

say 'The sum of x and y is' x+y

1 GREEN BOTTLE STANDING ON THE WALL

Hello
The sum of x and y is 7

The SAY instruction is used to display output on the terminal.

If the SAY instruction is coded without any expression, REXX will output a blank line; otherwise, any valid REXX expression such as a variable, constant, arithmetic expression, character string, or
any combination of these can be coded.

Click Play to see some examples of the SAY keyword instruction.

0 5/24 C e <

w———-PULL

hd
-

|—temp'| ate J

say "Enter your name" Enter your name
parse pull name Fred Nurk
say "Enter your job" Enter your job
pull job Programmer

say "Hello, "name". You are a "job"." Hello, Fred Nurk. You are a PROGRAMMER.

The PULL instruction is used to receive input data from the external data queue or, if that is empty, from the terminal. It is mostly used in combination with the SAY instruction. SAY is used to ask a
question and PULL is used to get the answer.

The PULL instruction is an abbreviated form of the PARSE UPPER PULL instruction, and it converts all character input to uppercase. The PARSE PULL instruction must be used to receive input
data without uppercase translation. The template is a model of how the data received should be broken down into variables. If only one variable name is used, it is set to the entire string entered.

Click Play to see how the PULL and PARSE instructions are used.

06/24 C

== The External Data Queue > Variable Management

ARG

DROP
PARSE
PROCEDURE
PULL

PUSH
QUEUE
UPPER

Variable management instructions

Retrieves input argument strings and translates them to uppercase

Resets or drops one or more variables

Assigns data from various sources to variables

Provides for local variables within an internal routine

Reads the next line in the program stack and translates it to uppercase

Places the results of a given expression at the beginning of the program stack; last in, first out
Places the results of a given expression at the end of the program stack; first in, first out

Translates one or more variables to uppercase

Variable management instructions are used to control, set, and manage variables and data during the execution of a REXX program.

Listed above are the instructions that are used to manage variables.

08/24

External data queue J

REXX processing area

The external data queue, which is also referred to as "the data stack" or just "the stack”, is used to store raw data in the form of records without using variables.

Imagine a bucket with a hole in the bottom of it, which is placed on top of the area in which a REXX procedure is processing. All the data records to be stored are placed in the bucket and then
pulled, one at a time, through the bottom as required.

The external data queue is managed by the QUEUE, PUSH, PULL, or PARSE PULL instructions.

0 9/24 <

External data queue J

Nice day

REXX processing area Hello Fred

Name = "Fred"
QUEUE "Hello" name
QUEUE "Nice day"

The QUEUE instruction evaluates an entered expression and places the resulting data as a record into the data stack in first in, first out order (FIFO), or puts it into the top of the bucket as shown
in the previous diagram.

Click Play to see how the QUEUE instruction works.

0 10/24 (6 <

External data queue J

Nice day
Hello Fred

REXX processing area Hello Mary

Name = "Fred"
QUEUE "Hello" name
QUEUE "Nice day"

PUSH "Hello Mary"

PUSH evaluates an entered expression and places the resulting data as a single record into the data stack according to last in, first out (LIFO) processing, or is "pushed" up into the bucket, as
shown in the previous diagram.

Click Play to see how the PUSH instruction works.

011/24 (6

External data queue

REXX processing area

Name = "Fred"
QUEUE "Hello" name
QUEUE "Nice day"
PUSH "Hello Mary"
PULL a

SAY a

PARSE PULL b

SAY b

PARSE UPPER PULL c
SAY ¢

The PULL instruction is used to extract data from the external data queue one line at a time and break it down according to a variable template. Using the same bucket analogy, the data would be
pulled from the stack though the bottom of the bucket.

PARSE PULL and PARSE UPPER PULL can also be used. If the PULL instruction is used and there are no records in the stack, the REXX interpreter waits for input from the terminal. Records left
in the stack after the REXX program has completed will be processed by the application running the program, but results could be unpredictable.

Click Play to see how the PULL instruction works.

0 12/24 C

= Variable Templates and Parsing > PARSE

v

— EXTERNAL
— NUMERIC
—— PULL
—— SOURCE
— VALUE WITH
__expression —

»—PARSE |\ J [ARG l.
UPPER

—— VAR
~—— VERSION

— L J —4
template

PARSE ARG accepts the source as the parameters specified when the program is executed.
For example, if the REXX named MYREXX1 was executed by the command:
MYREXX1 December 2008

then the following instruction:
Parse arg month year

would result in the variable month being set to "December” and the variable year being set to "2008".

To "parse" in programming is to analyze or separate a value or string of characters into more easily processed components.
The PARSE instruction is used to assign values from various sources to variables. This is done according to the rules specified in the PARSE instruction variable template.

Mouse-over the syntax to see definitions of the parameters and source areas.

0 14124

Variable template boundary
and special characters

Space
ner
nn
. (period)

, (comma)

PARSE is a powerful keyword instruction that breaks down character strings and sets variables. When coding the PARSE instruction, templates can be used to describe how the data is to be

divided. A template is a model of how a character string should be divided.

Defines a relative number of columns starting from the first character of the previous boundary.

Example 1
rect = "hammer tool for hitting nails"
parse var rec1 item 10 description +20

would set item to "hammer “and description to "tool for hitting nails", that is, everything from the
boundary for the next 20 characters.

Relative and absolute boundaries can also be used to redefine values to new variables.

Example 2
var1 = "Fred Frog The Pond, outtatown"
parse var var1 fname sname 10 address +20 -9 suburb 1 name 10

This instruction would set fname to "Fred" as the first word of the string, sname to "Frog", and
everything else up to but not including column 10. It would then set the address to "The Pond,
outtatown" and everything from column 10 for 20 characters. The boundary would then be
moved back nine characters and the suburb set to "outtatown” for everything from that position to
the last non-blank character. The boundary is then reset to column 1 and the name is set to
"Fred Frog" for everything from that column for nine characters up to but not including column 10.

Spaces, literals, and relative and absolute column values can be used to define boundaries, and variables are set to the values within those boundaries.

Mouse-over the boundary values for descriptions and examples.

0 15/24

= Variable Templates and Parsing > Parsing

Akira Noni Lee 22 My St. NY, 10001 E
S

l PARSE VAR rec1 fname . sname 21 addr +20 state "," zipcode 1 name +20 I

Because the next boundary defined is prior to the current position (1),
zipcode is set to everything after the literal character , (comma).

Fname = Akira
Sname = Lee
Addr = 22 My St.
State = NY
zipcode 10001

The use of boundary characters and multiple variables with the PARSE instruction enables you to use one statement to perform what would normally take many assignment statements.
In this example, a variable called recl contains a typical data record.

Click Play to see this example in use and the values that it would set.

016/24 »— »

= Variable Templates and Parsing > ARG

v
-~

W——-=ARG
|— template J

The ARG instruction is an abbreviated version of PARSE UPPER ARG, which can define multiple strings and templates if the REXX has been called from another REXX.

Use PARSE ARG to receive parameters or arguments in the same case in which they were passed.

0 17124

» DROP

v
-~

—var——

Name = "Fred Nurk" Hello, Fred Nurk. You are a Programmer.

Job = "Programmer’ . b Hello, NAME. You are a JOB.
say "Hello, "name". You are a "job".

DROP name job

say "Hello, "name". You are a "job"."

Any word that is not recognized as a keyword instruction, function, or literal by the REXX interpreter is considered to be a variable. Unlike most other programming languages, the initial value of
any variable is the variable name in uppercase.

Variables can be assigned a value though several facilities and they retain that value until the REXX completes processing. Use the DROP instruction if you want a variable to be reset or
unassigned.

Click Play to see an example.

0 18124 c

= Variable Templates and Parsing > UPPER

» UPPER

v
-

—var—

Name = "Fred Nurk"

Job "Programmer"

say "Hello, "name". You are a "job"."
UPPER name job

Hello, Fred Nurk. You are a Programmer.
Hello, FRED NURK. You are a PROGRAMMER.

say "Hello, "name". You are a "job"."

The UPPER instruction converts to uppercase the value of any alpha characters assigned to a variable name. There is no equivalent for lowercase.

Click Play to see an example.

0 19/24 C

