NTersKiLL
learning

Logic Flow - Conditional Processing

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

0 1/26

Objectives

Logic Flow - Conditional Processing

In this module, you will examine the two types of conditional instructions that REXX supports.

You will also discover how conditional instructions enable a program to choose different paths depending on whether specific conditions are met or
not.

After completing this module, you will be able to:

¢ Recognize the IFFTHEN/ELSE Construct Keyword Instructions
¢ Recognize the SELECT/WHEN/OTHERWISE Construct Keyword Instructions

= ThelF Instruction > IF Syntax

2

P—IF— expression THEN instruction q)
1;—"- -I‘—’I- I“JI-ELSE U instruction UJ

Conditional processing enables the logic of a program to take different paths and perform different actions depending on whether specific conditions are met or not.
The 1F instruction evaluates an expression. If the expression is true, the following instruction THEN is executed.

Optionally, the ELSE clause enables a different instruction to be executed if the expression evaluates to false.

03/26

= ThelF Instruction > IFITHEN/ELSE Construct Flow

.) WHEN . .
THEN instruction expression ELSE instruction

This flowchart illustrates how the logic of the IF/THEN/ELSE construct works. This can be coded as:
IF expression THEN instruction /* true */
ELSE instruction /* false */

Alternatively, the instruction to be executed can be coded immediately after the branch clause like this:
IF expression THEN

instruction /* true */

ELSE

instruction /* false */

04/26

Example 1:
This example shows an IF/THEN/ELSE statement defined in a single line. The statement
separator (;) is required between the THEN instruction and the ELSE.

IF today = 'SUNDAY' THEN SAY 'Sleep in'; ELSE SAY 'wake up!'

Example 2:
This example shows a more common method of coding the IF/THEN/ELSE construct.

IF light = "red" THEN SAY "You must stop"
ELSE SAY "You can go now"

Example 3:
This example shows the most common layout with the IF statement formatted across multiple
lines.

IF day = "pay day" THEN
say "go shopping"
ELSE
say "stay home"

The IF/THEN/ELSE construct can be coded in single or multiple lines.

As shown in Example 3, the instruction executed in the event of a true or false expression can be coded on the line after the THEN or the ELSE. In this case, a comma is not required to indicate a
continuation.

0 5126 < <

= ThelF Instruction > Multiple Conditional Instructions

IF day = "pay day" THEN
do
say "go shopping”
Money_spent = "$60"
end
ELSE
do
say "stay home"
Money_spent = "$@"
end

THEN and ELSE clauses enable only the next instruction that is encountered to be executed.
When multiple instructions are required to be executed, the DO and END keywords can be used. A group of instructions can then be executed for THEN or ELSE clauses.

Shown here is an example of the DO and END instructions being used in an IF/THEN/ELSE construct to enable multiple instructions to be executed by THEN or ELSE.

06/26

= ThelF Instruction > NOP Instruction

[V . »
L4 y L)

The no operation (NOP) instruction can be used in situations where a clause may require an instruction, but there is no programming requirement.

The NOP instruction does nothing.

07/26

NOP instruction example

IF today = Sunday then NOP /* shhh, pon't say anything */
Else sAaYy "wake up!™

A better way to code this would be:

IF today /= Sunday then SAY "wake up!"

Generally, at least one instruction should follow the THEN and ELSE clauses. When either clause has no instruction requirement, it is good practice to include the NOP instruction after it, as shown
in this example.

It is particularly important to use NOP when nesting IF instructions because it helps to prevent bugs that can cause unexpected results.

Note that it is not mandatory to code the ELSE clause if it is not required.

0 8126 wal I

Given a=1, b=2, and ¢=3.

Example 1;
IFa=1|b=3 then ... /* would return a "true" result. */
Example 2:
IFa=1&b=3 then ... /* would return a "false" result. */
Example 3:
IFa=2&b=1]|c=3 then ... /* would return a "true" result. */
Example 4:
IFa=2&(b=1|c=3) then ... /* would return a "false" result. */

When evaluating IF clauses, multiple conditions can be specified by using the Boolean log characters & for "and" and | for "or".

Many expressions can be included with multiple Boolean operators, but to avoid confusion with precedence, since "and" is processed before "or", you can use parentheses to clarify the required
order of precedence.

Shown here are some examples of multiple expressions being used in an |IF statement.

0 10/26 Y ¢

The IF Instruction > IF/THEN/ELSE Example

COLUMNS 001 072
SCROLL >
" TOP OF DATA ™o vesr ve s o de st ve ot ve st e o e ot ¥ 3 ot e o

EDIT ---- USERL.ISPF.ISPCLIB(EX®3) 2l1.01
COMMAND >

Intro to REXX exercise 3.
Sep. 91

The next line executed is 15 because A is less than C.
ORDER is assigned the character string containing
the letters BAC

R 'when A ="A

BOTTOM OF DATA

Here is an example of the IF/THEN/ELSE construct in use.

The THEN parameter of the IF statement is coded on the line following the IF statement. This format is acceptable, but it is more common to code them on the same line.

Click Play to see how the logic of this program works.

011/26 »—

The SELECT Instruction > Multiple IF Instructions

Multiple nested IF statements

IF lesson = 1 THEN subject = "Maths"
ELSE IF lesson = 2 THEN subject = "History"
ELSE IF lesson = 3 THEN subject = "Science"
ELSE IF lesson = 4 THEN subject = "English"
ELSE IF lesson = 5 THEN subject = "Geography"
ELSE Subject = "no lesson”

When multiple choices are available but only one is required,

a solution is to code multiple nested IF statements like the example shown here.

MW— SELECT ;l WHEN — expression -Ij- THEN -n- instruction J—b

OTHERWISE

Ll]

instruction

Alternatively, the SELECT instruction enables processing to continue down only one of several possible paths. The first WHEN clause expression that evaluates true will have its THEN clause
executed.

If no WHEN clauses evaluate true, the instruction following OTHERWISE is executed.

The SELECT instruction is a better and more efficient method of coding multiple options when only one will be correct.

0 14726

= The SELECT Instruction > SELECT Flow

The SELECT statement can be coded as follows:

SELECT

WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction

OTHERWISE instruction(s)
END

0 15/26

WHEN
expression THEN instruction [J

[} THEN instruction {3

L3 THEN instruction L3

False ‘
OTHERWISE instruction(s)

R
[__END |

= The SELECT Instruction > OTHERWISE Clause

SELECT

WHEN
expression THEN instruction L J

(3 THEN instruction []

L 1 THEN instruction J[_ 3

expression

False .
OTHERWISE instruction(s)

§ v
__END_|

The SELECT instruction flows from top to bottom and branches to the first true expression. If no expressions evaluate true, the instructions in the OTHERWISE clause are executed.

The OTHERWISE clause is not mandatory, but if no WHEN expression evaluates as true and there is no OTHERWISE clause, a syntax error will occur.

0 16/ 26

= The SELECT Instruction > SELECT Example 1

SELECT construct logic

SELECT

WHEN day = "Monday' THEN SAY 'Gym this morning'

WHEN day = 'Tuesday' THEN SAY 'Cycling this morning'
WHEN day = 'Wednesday' THEN SAY 'Swimming this morning'
WHEN day = 'Thursday' THEN SAY 'Running this morning'
WHEN day = 'Friday' THEN SAY 'Gym this morning'

WHEN day = 'Saturday' THEN SAY 'Swimming this morning'

OTHERWISE SAY 'Sleep in'
END

This example of the SELECT instruction always evaluates the same variable.

== The SELECT Instruction > SELECT Example 2

SELECT construct using different variables

SELECT

WHEN engines /= "OK' THEN SAY 'Engines check failed'
WHEN flaps /= 'OK' THEN SAY 'Flaps check failed'
WHEN fuel /= 'OK' THEN SAY 'Fuel check failed'

WHEN rudder /= 'OK' THEN SAY 'Rudder check failed'
WHEN runway /= 'OK' THEN SAY 'Runway check failed'
OTHERWISE SAY 'clear for takeoff'

END

This example of the SELECT instruction evaluates different variables.

While multiple WHEN expressions could evaluate as true, only the first one encountered will execute the THEN clause instruction.

0 18/26

The SELECT Instruction > Multiple IF Statements

Using multiple nested IF statements

IF Tesson = 1 THEN subject = "Maths"
ELSE IF lesson = 2 THEN subject = "History"
ELSE IF lesson = 3 THEN subject = "Science"
ELSE IF lesson = 4 THEN subject = "English"
ELSE IF lesson = 5 THEN subject = "Geography
ELSE Subject = "no lesson”

Using the SELECT construct

SELECT
WHEN lesson = 1 THEN subject = "mMaths"
WHEN lesson = 2 THEN subject = "History"
WHEN lesson = 3 THEN subject = "Science"
WHEN lesson = 4 THEN subject = "English"
WHEN lesson = 5 THEN subject = "Geography"

OTHERWISE Subject = "no lesson"
END

This example compares multiple IF statements with the SELECT/WHEN/OTHERWISE construct to perform the same logic.

The SELECT statement makes code easier to read, maintain, and debug.

0 19/26

= The SELECT Instruction > SELECT Options

Select construct options

SELECT
WHEN answers = @ | absent = "YES" THEN nop
WHEN answers < 1@ THEN

DO

SAY 'Not enough correct answers'

saY answers 'is less than 1@'

END
WHEN answers >= 16 THEN SAY 'well done!'
OTHERWISE nop
END

Like the IF instruction, SELECT supports the use of the DO and END keywords, NOP, and nesting.

Although the OTHERWISE clause is not always required, it is good practice to code it with the NOP instruction to avoid possible program errors.

WHEN clauses can also evaluate multiple conditions by using Boolean logic operands. This example shows some of these options.

0 20126

= The SELECT Instruction > How SELECT Works

WHEN s 'F' THEN status 'Girl'
HERWI status = 'child’

WHEN age < 20 THEN status = 'Teenager' status = woman
WHEN > 20 THEN Age = 40
DO sex = f
SELECT
WHEN ¢ 'M" THEN status
WHEN se '"F' THEN status
OTHERWISE status = 'Adult’

The EXIT at the end of the program
teminates the execution of the program.

then "This person is a
‘status is unknown'

This example shows how the SELECT construct works.

Click Play to see the program run.

0 21126 (6

