Exit

NTersKitL
learning

Logic Flow - Looping

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

0 1/28 >

Objectives

Logic Flow - Looping
In this module, you will discover how the DO keyword instruction is used by REXX to enable looping within an exec.
You will also look at the different types of loops and see how they are coded.
After completing this module, you will be able to recognize:
« Repetitive DO Loops
« Controlled Repetitive DO Loops

« Conditional DO Loops
o Compound DO Loops

DO—¥«

Example:

IF weather = "hot' THEN DO

SAY 'Today would be a good day'
SAY 'to go to the beach'

END

ELSE DO

SAY 'It is not warm enough'
SAY 'to go to the beach today'
END

You have looked at simple DO groups in the form of the DO/END construct. This form of the DO instruction is the only one that does not loop.

It is used as a means of grouping a series of instructions together, particularly when used in conjunction with the IF/THEN/ELSE and SELECT/WHEN/OTHERWISE keyword instruction constructs.

0 3/28 <

DO repetitor—J—N
TFOREVER

Example:
count = 5
DO count¥%2

SAY 'Hello world' count
END

Because 5%2 results in the whole number 2, this exec will display:

Hello World 5
Hello World 5

Notice that the value of 'count' did not change even though the expression evaluated to 2.

Alternatively, a number or repetitor can be used to create a simple DO loop that iterates or loops a set number of times. A "loop" is a series of instructions that are repeated one or more times
within a DO/END construct. The repetitor can be any one of the following:

- A positive whole number or zero: po 5 /* loop 5 times */
- A variable containing a positive whole number: count = 5 DO count /* Tloop 5 times */

- An expression that equates to a positive whole number: po 10/2 /* loop 5 times */

04/28 <

DOT repetitor —_I—N
FOREVER

Example:

DO FOREVER .
SAY 'Has time ended yet?'

END

If the FOREVER operand is used, the loop will iterate infinitely, or until an EXIT or LEAVE instruction causes the loop to end.

Obviously, a program that displays the same message as fast as the machine allows until time ends, or until the system programmer discovers it is wasting enormous amounts of CPU cycles and
cancels the session, would be impractical under normal circumstances. You will look at the practical uses of the FOREVER parameter later.

Pressing the interrupt (PA1) or attention (ATTN) key will normally interrupt and halt a program suspected of being in an infinite loop.

0 5/28

B 0o rorever |
4
\

IF True

expression => THEN EXIT N

False '

\;
4
o procran B

DO loops are ideal when a program must iterate a known or unknown number of times, but must terminate as soon as the required result has been achieved. The two instructions that enable a DO

loop to be terminated prematurely are EXIT and LEAVE.
The least used of these is the EXIT instruction, which terminates the program immediately. This might be useful if an internal error is detected while in a loop, but has limited use in most program

logic as the program ceases to run.

06/28

—» DO FOREVER

|__instructions __
{

IF True
expression =) THEN LEAVE —_—

False ‘

<
-«

Unlike EXIT, the LEAVE instruction was designed specifically for loops. When encountered, it causes control to be passed to the instruction after the END clause, thereby terminating the loop but
not the program.

As shown above, LEAVE is usually executed as the result of a conditional expression.

07/28

= Repetitive Loops >

LEAVE Example

EDIT USERL.ISPF.ISPCLIB(DOUBLEIT) Columns @000l 0

Command

"Enter number to d -

“* Top of Data

croll =

vely doubles a numb
PULL number

"Enter Ta number to display:'; PULL endn

8 DO FOREVER
number = number * 2
IF number > endn THEN LEAVE
SAY number

"reached’

Number =5
Endn = 50

The forever loop is now entered for processing.

“* Bottom of Data ¥l

The DOUBLEIT program shown here will repetitively double and display a number until a maximum value has been reached.

Click Play to see how the first section of this program asks for and accepts input from the terminal.

08/28

= Repetitive Loops > LEAVE Example

EDIT USERL.ISPF.IS DUB) Columns 0000l 0007
scroll > CSR

Command
ake " d Top of Data *
This jram repetitively doubl a number
'"Enter number to double:'; PULL nu r
'"Enter lar t number to splay:'; PULL endn

04 Number = 10
D0 FOREVER Cumbor o Endn = 50

> endn THEN LEAVE
number The END of the FOREVER loop is reached
and the program jumps back to the top of
DO FOREVER on line 5.

endn 'reached'

Bottom of Data ##s i

Now the program has entered the loop. As the FOREVER parameter has been used, checking is not performed each time the loop iterates.

Click Play to see the loop process being performed by the program.

09/28 ll—

DO — name=start >4
I— TO —finish J I-BY— increment-J |- FOR = limit J J

N —
name A control variable that can be stepped, that is, incremented or
decremented, through some range of values.

start A number or expression that evaluates to a number. This number
represents the starting number of the loop, and the first value that name
will be assigned.

finish A number or expression that evaluates to a number. This number
represents the ending number of the loop. When this number is reached,
the loop will end.

increment A number or expression that evaluates to a number. This number controls
the value by which name is stepped. If not specified, the stepping
increment will be +1.

Timit A number or expression that evaluates to a positive whole number. This
number controls the maximum number of iterations for the loop.

An alternative to the FOREVER loop is a controlled repetitive loop, which is also called an iterative DO loop. A controlled repetitive DO loop provides a large number of optional parameters to
control how the loop operates.

When the controlled repetitive DO loop is first entered, the control variable or name is assigned the value of start prior to the execution of the instructions preceding the END clause.

With each iteration, the value of name is stepped by adding the value of increment prior to the execution of the instruction list.

€ 1/ 7

= Controlled Repetitive Loops > Terminating DO Loops

DO — name=start

I- TO-finishJ I-BY— increment-| I- FOR - IimitJ)
\ — ~

name A control variable that can be stepped, that is, incremented or
decremented, through some range of values,

start A number or expression that evaluates to a number. This number
represents the starting number of the loop, and the first value that name
will be assigned.

finish A number or expression that evaluates to a number. This number
represents the ending number of the loop. When this number is reached,
the loop will end.

increment A number or expression that evaluates to a number. This number controls
the value by which name is stepped. If not specified, the stepping
increment will be +1.

Timit A number or expression that evaluates to a positive whole number. This
number controls the maximum number of iterations for the loop.

The loop completes processing until one of the termination clauses is satisfied:

- Ifincrement is a positive number, looping stops when name is greater than finish.

- If increment is a negative number, looping stops when name is less than finish.

- If the BY clause is not specified, the default increment is 1.

- The loop can be limited to a maximum number of iterations by using the value of Timit.

- The FOR clause, if used, takes precedence over the normal execution of the TO and BY clauses if 1imit is reached

0 12/28

= Controlled Repetitive Loops > Examples

»
LA

PO namersiat I- TO -finishJ I-BY— im:rementJ I- FOR - IimitJ

Tine =
DO count = 1
line = line count','
END
SAY line /* Never executed because the loop is infinite.
The control variable increments by 1 each iteration */

Here are some examples of iterative DO loops and their results.

Mouse-over each parameter to see how they are used.

0 13/28

DO —— WHILE —— EXPRESSION —
—[UNTIL:l_

)
mmmgd DO WHILE While loop: Sy DO UNTIL | ntil loop: |
False |_Instructions) |

True ' True

. False '
— —HE

v v
[insuctonts) |

Another form of loop is the conditional DO loop, which has two mutually exclusive condition tests that can be performed.
WHILE loops test that the expression is true before processing any instructions and looping; this is referred to as "pre-processing” because the test is done before the loop is processed.

UNTIL loops process all instructions before testing the expression and will only loop if it is false; this is referred to as "post-processing” because the test is done after the loop has been processed.

Note that UNTIL loops will always process at least once.

0 15/28 e <

= Conditional and Compound Loops > Examples

DO —— WHILE —— EXPRESSION —
—I:UNTIL:l—

Count = @

DO while count < 2
count = count + 1
SAY count

END

/* the result will be "1" displayed, followed by "2" */

Mouse-over the WHILE and UNTIL parameters to see an example of their use.

For example:

DO count = 1 TO 5 BY .5 FOR 5 UNTIL Tline > '1, 1.5, 2.0"
Y Y
Repetitive Conditional

A compound DO loop is a combination of both repetitive and conditional DO loops. The compound loop ends when the repetition counter is reached or the condition is met, whichever comes first.

mmmmmn d DO FOREVER

§

IF
expression THEN LEAVE Sy

False ‘

IF

expression THEN ITERATE
False ‘

DO loops normally iterate when the END clause is reached, but you may not want to process any further instructions within a loop during a particular iteration.

The ITERATE keyword instructs REXX to pass control to the END statement and iterate the loop. As shown in the diagram, ITERATE is usually executed as the result of a conditional expression.

0 18128 2 <

EDIT IS columns @0
Command scroll
"W ¥ ¥ W T(’Jp o r D:I ta ! » VR YR
i y doub a num
num Number = 20
PULL start Start = 20
PULL endn Endn = 50

The loop continues until number
has a value of 80

number

ndn 'reached’

* pottom of Data

This version of the DOUBLEIT program has been modified to use the ITERATE instruction. A "minimum" is now requested and no numbers will be displayed until a minimum value has been
reached.

We will assume that when this program is executed, the user enters 5 as the number to double (number), 20 as the smallest number to display (start), and 50 as the largest number to display
(end).

Click Play to see how the FOREVER loop is now processed with the LEAVE and ITERATE keywords.

0 20/28 ll L " £

EDIT U R1.ISPF.ISPC AB) Columns 000l 0
command > scroll
e 2 e e e ¥ e e ¥ e S To p 0 r D ata Ve % ¥ W Ve W ¥ W Ve 2 Ve 2
e 12 times tables

90 1loo 110 120
88 99 1le¢ 121 132
96 108 120 132 144

As with IF/THEN/ELSE constructs, DO loops can also be nested within other DO loops.

This program produces a 12 x 12 matrix of a multiplication table. The outer loop controls which line of the matrix is to be built. The inner loop builds the output line with all the multiplication values
and displays it. The RIGHT function on line 8 will be covered in a later module.

Click Play to see the result of running this REXX program.

0 21/28 (6 <

= Controlling Nested Loops > END Instruction

USER1.ISPF.ISPCLIB(TABLES12) columns 00001 00072
scroll => CSR

: * Top of Data
(X exec to display the 12 times table
=1 T0 12

T

Tine =
DO inner = 1 TO 12
value = table * inner)
Tine = 1ine' 'RIGHT(value,3,' ")
END inner

SAY line

Ger
* Bottom of Data *

In this example, both END clauses have been coded with the name of the loop control variables.
This option is available for controlled repetitive DO loops and is good practice because it aids debugging when working with multiple nested loops.

This parameter is purely for documentation and debugging purposes and has no effect on processing.

0 22128

EDIT SPF. Columns 00201 00
Command scroll > C

31 /* R xec to enter
4 / time

999

loopl; PULL arti 1 '* Loop to input up to 999
t.loopl = "QUIT" THEN] Artist Names

loopl "' THEN

s JPULL CD. loop : p to 1nput

T' THEN [N] p 1 WAEE for 2

input ug
s for an CD

END Tooy

Ring Ring
END loopl

DANCING QUEEN

The second album is requested but the enter key

is pressed on a blank line. I Ente@

When working with controlled repetitive DO loops, control variables can be used on the LEAVE and ITERATE instructions to alter the flow of active loops. This is useful for modifying the flow of
nested DO loops.

Click Play to see how this REXX program would run and the role that control variables would play.

023/28 II— » 4

