TNTErsKiLL
learning

String Functions

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2021

0 1/32

REXX function types

Built-in functions

TSOIE functions on z/OS platform only

User-written functions

Application functions

TSOIE functions provide many facilities when running on the
2/OS platform, such as file processing and message trapping.

While REXX programs using just keyword instructions can be written to do most things, many complicated and commonly used facilities have to be coded in special "functions” that can be included
in any standard REXX clause or expression.

Functions perform specific actions or calculations, and return a result.

Listed above are the four types of functions. Mouse-over each function for a brief description. You will now focus on the built-in functions that are available with the REXX interpreter.

0 3132 »

REXX Built-In Functions > Function Groups

String functions

Text and word functions

Justification functions

Numeric functions

Character conversion functions

Environment functions

Stream /O functions

Perform various comparison, interrogation, and manipulation actions on
data strings

Interrogate and manipulate words and specific data within a string

Justify and format text and data strings

Interrogate and format numeric values

Convert and manipulate binary, hex, and character values

Interrogate the environment that the REXX program is running under,
and return settings and definitions

Used for file processing on many platforms

More than 50 built-in functions are available in REXX, depending on the platform and the version of REXX that is running.

For the purposes of this course, we have divided the built-in functions into the groups listed above.

04/32

]

L expression J

»— function_name () —

The REXX function call is the same basic format for all functions, regardless of the action they perform or the result they return.

The number and type of expressions depends on the function that is being called. For example, a numeric function may expect a number and will cause an error if something other than a valid
number is passed as an expression. Too many or too few expressions can also cause errors.

REXX requires parentheses to be coded, even if there are no expressions. In fact, REXX will not recognize a function as such unless a left bracket immediately follows its name. Do not code a
space between the function name and the left bracket.

0 5132 e <

Function expression examples
lTastname = SUBSTR('FRED FROG',6,4)

Name = "FRED FROG"
lastname = SUBSTR(name,6,4)

Name = "FRED FROG"
Len = LENGTH(name)
lastname = SUBSTR(name,len-3,4)

Name = "FRED FROG"
Tastname = SUBSTR(name,LENGTH(name)-3,4)

Name = "FRED FROG"
lastname = SUBSTR(name,POS(' ',name)+1,LENGTH(name)-POS(' ',name))

Note: Be careful when using functions within functions. Although the code is more efficient,
it is usually more difficult to understand and debug.

The expression or expressions coded between the parentheses of a function are passed as arguments to the function after being interpreted and evaluated.

The expression passed to a function can be any valid REXX expression consisting of variables, literals, arithmetic evaluations, or even other functions. Obviously, the resulting string must be a
value that is expected or required by the function, or an error could occur.

A powerful feature of REXX is that multiple functions can be combined or nested to produce a result.

The above examples of expressions used in a function would yield the same result.

) X 7 <

REXX Built-In Functions > Function Results

Actions Code

letters 'ABC

Display the result SAY LENGTH(letters)

Assign the result to a variable len = LENGTH('ABC')

call length 'ABC

Function called as a procedure Ten = result

% Compare the result to something =~ IF LENGTH('ABC') > 2 THEN...

Result

len=3

1 (true)

len=3

REXX functions that execute successfully will always return a result that the interpreter will replace the function with; it is up to the programmer to decide what to do with the result.

Functions can also be called like any procedure, but they rarely are because this requires more lines of code.

Shown here are some examples of functions in use.

0 7132

= Manipulating Strings > Standard String Functions

ARG
COMPARE
COPIES
DATATYPE
DELSTR
INDEX
INSERT
LASTPOS
LENGTH
OVERLAY
POS
REVERSE
SUBSTR
SYMBOL
VERIFY
XRANGE

Retums the character position of a substring in a given string.

String functions interrogate, compare, and manipulate character strings of data. Listed above are the standard built-in functions that fall into this loosely defined category.

Mouse-over each function for a brief description.

09/32

= Manipulating Strings > COPIES Function

»w—— COPIES(string,n) 2
y.
Examples:
COPIES('abc',2) /* 'abcabc' */
COPIES('*',ZG) /* Fsrdededrdesrdestde e de s ve st sty ! x/

The COPIES function returns n copies of string concatenated together.

Manipulating Strings > DELSTR Function

»w——DELSTR (string,n -|_—_|—) —
,Jength

Examples:

/*'Data’ */
/* 'Datarain' */
{* 'The white sheep' */

DELSTR('Datatrain',5)
DELSTR('Datatrain',5,1)
DELSTR('They are white sheep',4,5)

The DELSTR function returns 1ength characters deleted from string, starting at n.

If Tength is not specified, all characters from n are deleted.

0 11/32

»w—INSERT(new,target [) =

T

|-Iength-l I-,pad
Examples:
INSERT('new', 'old') /* = 'newold' */
INSERT('new', '0l1d',2) /* = '"olnewd' */
INSERT('new','01d',2,5,'*") /* = "olnew**d' */
INSERT('new','old',7,5,'*") [Ee =] ey appen S/

The INSERT function will insert the characters new into target. All other parameters are optional; n specifies the location in target after which to insert new. The default for n is 0, which means
to insert before the beginning of target.

If n is greater than the Tength of target, padding occurs using the character specified by pad. The default pad character is a blank space.

The default for Tength is the length of the new string, but if it is specified, a length less than the length of new will cause new to be truncated. A Tength greater than new will cause new to be
padded with the pad character.

0 12/32 & <

= Manipulating Strings > OVERLAY Function

»w—OVERLAY (new,target [)

C Ll

" Liengthd L pad

Examples:

OVERLAY ('when', 'whatever') /* = 'whenever' */
OVERLAY ('when', "whatever',5) /* = 'whatwhen' */
OVERLAY ('when', 'whatever', ,6) /% = 'when er' ¥*/

OVERLAY ('when', 'whatever',10) /* 'whatever when' */
OVERLAY('when', 'whatever',10,6'%*') /* = 'whatever*when®#=' */

The OVERLAY function will replace characters in target with characters from new; that is, it will overlay target with new, starting from position n in target.
If n is omitted, overlaying begins at position 1 in target. If Tength is specified, it is used to pad or truncate new.

If padding is required, the pad character specified by pad will be used. Otherwise, the default pad character of blank will be used.

0 13/32

= Manipulating Strings > REVERSE Function

»— REVERSE (string)

v

Examples:

REVERSE('ahcde') [*'edcba’*/
REVERSE('ward") /* 'draw' */
REVERSE('toot"') /* 'toot' */

The REVERSE function returns a character string swapped end-over-end; that is, the first character of string becomes the last and vice-versa.

= Manipulating Strings > SUBSTR Function

»— SUBSTR (string,n |. !) —«

’ I-IengthJ I—,p::ldJ

Examples:

SUBSTR('abcdefghij',7) /* = 'ghij" */
SUBSTR('abcdefghij',7,2) /* = 'gh' */
SUBSTR('abcdefghij',7,7,'%"') /* = "ghij%xx' */

The SUBSTR function returns a substring of string, starting at character n, of Tength characters.

If Tength is not specified, the remainder of string is returned. If Tength is specified, it is used to truncate or pad the remainder of string.

The default pad character is a blank space.

0 15/32

»——XRANGE(Lstart T I-end T) 4l

Examples:

XRANGE (a,f) => 'ABCDEF'
XRANGE('a','f") => 'abcdef'
Xrange('fl'x, "F9'x) => 'FLF2F3F4FSF6F7F8F9"x

The XRANGE function returns a string of all one-byte codes between and including a specified start and end character in a given string. This can be useful when, for example, the entire alphabet
must be assigned to a variable.

Care should be taken as XRANGE looks at the hex value of the start and end characters and would include every hex value within the range. These characters can vary depending on whether the
platform is using ASCII or EBCDIC.

0 16/32 e <

»
L]

~

»—ARG(I—r T

I-,optlonJ
2nd ARG
3d ARG
Examples: |
/ following "call name 'X1',,'yl'" */
ARG() -> 3
ARG(1) -5 !
ARG(2) -> o
ARG(3) -> 'y1l'
ARG(n) -> "' /% for n>=4 % /
ARG(1,'e") -> 1 /% true Arg 1 EXists
ARG(2,'E") -> (] /* false - Arg 2 is nul
ARG(2,'0") -> 1 /* true - Arg 2 Omitted
ARG(3,'0") -> @ /* false - Arg 3 exists */
ARG(4,'0") -> 1 /% true - Arg 4 omitted */

When a REXX routine is executed, parameters or arguments can be passed to the program or procedure and normally accessed by using the ARG keyword instruction. However, a comma in the
parameter list is interpreted differently, depending on the command or instruction used. When using the CALL keyword instruction to execute a procedure, a comma is considered to be an
argument delimiter.

The ARG function can be used to determine how many arguments have been passed (ARG ()), the value of an argument (ARG (n)), and whether an argument exists (ARG(5,"E")) or is omitted
(ARG(3,'0")).

When a REXX is executed by an explicit or implicit EXEC command for TSO/E, only one argument is passed across and commas are considered to be literal characters in the parameter string.

018/32 2 <>

= Locating and Comparing Strings > COMPARE Function

»— COMPARE(string1,string2 |_ J) —«
,pad

Examples:

COMPARE('abc', 'abc') /* returns @ - 'abc' = 'abc' #/
COMPARE('ab ','ab') /* returns @ - 'ab ' = 'ab ' #/
COMPARE('ab ','ab','-") /* returns 3 - '"ab ' /= 'ab- /
COMPARE('ab', 'abc') /* returns 3 - 'ab ' /= 'abc' */

The COMPARE function compares two strings and returns 0 if they match. If the strings are not equal, COMPARE returns the position of the first character that does not match.

COMPARE pads the shorter string with the specified character, which is a blank space by default.

0 19/32

Locating and Comparing Strings > DATATYPE Function

»— DATATYPE(string I_ J) —
type

The DATATYPE function is very useful for verifying program input data and can be used to
prevent unexpected errors.

Examples:

PULL input)

IF DATATYPE(input) = 'NUM' THEN answer = l@*input
ELSE SAY 'Not a valid number'

DATATYPE(99) /% returns NuUM */

DATATYPE('99A") /* returns CHAR */

The DATATYPE function is useful for verifying program input data and preventing unexpected errors. DATATYPE compares a string to the REXX definition of a string type. If only stringis
specified, DATATYPE returns NuM if the string is a valid number; otherwise, it returns CHAR.

0 20/32

= Locating and Comparing Strings > DATATYPE Function

»— DATATYPE(string |_ J) —
type

Type Meaning Description
A Alphanumeric Returns 1 if string contains only characters from the ranges a-z, A-Z, and 0-9.
B Binary Returns 1 if string contains only the characters 0 or 1, or both,
L Lowercase Returns 1 if string contains only characters from the range a-z.
M Mixed Returns 1 if string contains only characters from the ranges a-z and A-Z.
N Number Returns 1 if string is a valid REXX number.
S Symbol Returns 1 if string contains characters that are valid REXX symbols.
U Uppercase Returns 1 if string contains only characters from the range A-Z.
W' Whole Returns 1 if string is a REXX whole number.
X HeXadecimal Returns 1 if string contains only characters from the ranges a-f, A-F, 0-9, and

blank when blanks appear only between pairs of hexadecimal characters..

If string and type are both specified, DATATYPE compares the contents of string to the type and returns 1 (true) if they match; otherwise, 0 (false) is returned.

Listed above are the types supported by the DATATYPE function.

021/32

= Locating and Comparing Strings > DATATYPE Function

-
\
‘ »w— DATATYPE(string B]) —4
type
Type Meaning Description
A Alphanumeric DATATYPE('99B','ALPHA") * retuns 1 */
B Binary DATATYPE('01010111''Bin.") * returns 1 */
L Lowercase DATATYPE('abc''Ic") * returns 1 */
M Mixed DATATYPE('Datatrain’,'M') * returns 1 */
N Number DATATYPE('99.999''N") * retuns 1 */
S Symbol DATATYPE('99B','sym') i* returns 1 */
U Uppercase DATATYPE('abc','UC') * returns 0 */
W' Whole DATATYPE('99",W') * returns 1 */
X HeXadecimal DATATYPE('A9 B3''X’) * returns 1 */

The type, if used, is the only character that is required. Any characters that follow it are ignored, but specifying the meaning helps to document your program.
Hexadecimal must start with X and type is not case-sensitive.

Listed above are some examples of the DATATYPE function and its returned values.

0 22132

»—LASTPOS(needIe,haystackm—) =«
,sta

Examples:

LASTPOS('bc', "abcde abcde') /* 8 */
LASTPOS('bc', "abcde abcde',5) =
LASTPOS('de', "abcde abcde',3) /X =0 %

The LASTPOS function returns the starting position of the last occurrence of needle in haystack. If needle is not found in haystack, 0 is returned.

If start is not specified, the search begins at the end of haystack and continues left toward the beginning of haystack. If start is specified, searching commences at start and continues left
toward the beginning of haystack.

The value returned will always be 0 when need]e is not found or the number of the characters counting from the first character in the string to the first character of the needle.

0 23132 <

= Locating and Comparing Strings > LENGTH Function

»—LENGTH (string)

v

Example:
LENGTH('Hello") /* =5 *f

The LENGTH function returns the length of the string passed to it.

»— POS(needle,haystack m—) =«
,sta

Examples:

POS('bc', 'abcdefg') [* 2 */
POS('bc', 'abcdefg',4) /* =0 */
Pos('z', 'abcdefg') [* =0 %/

The POS(needle, haystack) function is the same as INDEX(haystack,needle) function.

The POS function returns the starting position of needle in haystack. If needle cannot be located in haystack, POS returns 0.

If start is not specified, the search commences at the start of haystack and continues right towards the end of haystack. If start is specified, searching commences at start and continues
right towards the end of haystack.

The Pos(needle,haystack) function is the same as the INDEX (haystack,needle) function.

0 25132 e <

= Locating and Comparing Strings > SYMBOL Function

»——SYMBOL(value) al

Where value is a variable or literal character string.

Examples:
Drop X.2
Y=2
symBoL('y") - 'VAR'
SYMBOL (y) -> 'LIT' /* has tested "2" xf
SYMBOL("x.y") -> 'LIT' /* has tested X.2 */
SYMBOL (2) -> 'LIT' /* a constant symbol */
SYMBOL("*"') -> 'BAD' /* not a valid symbol */

The SYMBOL function interrogates the REXX variable pool to determine whether a variable has been set to a value.

It returns 'BAD" if the specified string is not a valid REXX symbol, 'vARr' if the string is the name of a used variable, or 'L1T"' otherwise.

0 26132

W—VERIFY(target , reference 5 |)—
’LomwnJ Lsan

Examples:

VERIFY('this is Datatrain','dathns')=> 3
VERIFY(16925.71,0123456789) => 6
VERIFY('XYZ3TUS', '123456789@"','M"',5) -> 7
VERIFY('XYZ3TUS', '123456789@','N"',4) -> S

The VERIFY function verifies that a specified string only contains characters from a specified reference string by returning the position of the first character that is not in the reference, or 0 if the
string is composed only of characters in the reference.

Alternatively, the function can determine the first character of the string that is in the reference by using the MATCH option. A start position can also be defined.

Mouse-over the syntax for a brief description of its parameters.

0 27132 & <

