NTersKiLL
learning

Numeric, Justification, and Conversion Functions

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

01/32

Objectives

Numeric, Justification, and Conversion Functions

In this module, you will explore the numeric, justification, and conversion built-in functions in the REXX language. These functions help analyze and
format numeric values and data strings.

After completing this module, you will be able to:
« |dentify Numeric Functions

« |dentify Justification Functions
« |dentify Conversion Functions

= Numeric Functions > Function Groups

String functions

Text and word functions

Perform various comparison, interrogation, and manipulation actions on data
strings.

Interrogate and manipulate words and specific data within a string.

Justification functions

Justify and format text and data strings.

Numeric functions

Interrogate and format numeric values.

Character conversion functions

Convert and manipulate binary, hex, and character values.

Environment functions

Stream 1/O functions

Interrogate the environment that the REXX program is running under, and
return settings and definitions.

Used for file processing on many platforms.

For the purposes of this course, we have divided the built-in functions into the groups listed above.

You will now focus on the justification functions and numeric functions.

03/32

= Numeric Functions > Numeric Function List

ABS
FORMAT
MAX

MIN
RANDOM

SIGN
TRUNC

Returns the absolute value of an entered number.

Rounds and formats a given number according to specified lengths of integer part and decimal part.
Returns the highest value number in a specified list.

Returns the smallest value number in a specified list.

Returns a random number within a specified range. When a "seed" is specified, the random
numbers generated will be the same each time the routine is executed. After specifying a seed, it
will be "remembered" for all further executions of the RANDOM function, and should not be coded
again.

Returns an indicator of the sign of a given number; "1" for positive, "-1" for negative, and "0" for 0.

Truncates a numeric value to a specified number of decimal places.

Numeric functions are used to interrogate, manipulate, and present numeric values.

Listed above are the numeric functions that you will examine.

04/32

= Numeric Functions > ABS Function

W—— ABS(number) ————— ; ——¢
Example:

x=-45; y=77

say abs(x) abs(y) J*will display:45 77%/

The ABS function returns the absolute value of a number, that is, it makes negative numbers positive. For example, this piece of code:

if y<0 then x=-y
else x=y

is equivalent to coding the following:

x=abs (y)

0 5/32

»— MAX(number) —«
|£, number]-l

Examples:

max(1,2,3,4,5) (ERE R R
MAX(56.6,-45,5636,33,-666,-33) /* = 5636 */
MAX(-1,-2,-3,-4,-5,) [*=-1%/

The MAX function returns the largest number from the list of numbers specified. A maximum of 20 numbers can be passed to the MAX function, but using a MAX function within the MAX function
will effectively increase that number.

For example:
mAax(1,23,56,24,14,8,9,56,73,43,76,78,45,15,48,26,59,6,28,max(6,34,2,8,39,75,93,72.31))

would return the value 93 from the inner MAX function and then use that value in the list of values for the outer function.

06/32 e <

= Numeric Functions > MIN Function

»— MIN(number) —¥¢
|£ number :I-I

Examples:

MIN(1,2,3,4,5) = O/
MIN(56.6,-45,5636,33,-666,-33) /* = -666 */
MINC-1,-2,-3,-4,-5,) f O =

The MIN function returns the smallest number from the list of numbers specified.

As with the MAX function, the MIN function can have a maximum of 20 parameters, but can contain nested MIN functions.

0 7132

»— RANDOM() —
max
min,
, J |-maxJ l-,seed J
Examples:
RANDOM() /* number ranging from @ to 999 */
RANDOM(5) /* number ranging from @ to 5 */

RANDOM (S5, 1@) /* number ranging from 5 to 1@ */
RANDOM(5,108,6) /* always 8 */

The RANDOM function generates a pseudo-random number in the range specified by max or min,max.
If min or max are not specified, they default to 0 and 999 respectively.

The seed value can be defined to enable successive calls to the RANDOM function to be reproducible for testing purposes. If seed is not used the first time that RANDOM is called, the numbers
will change each time the program runs.

Y R ’ <

= Numeric Functions > SIGN Function

» SIGN(number) 2
Examples:
SIGN(5) /* =1 %/
SIGN(-5) /* = -1 */
SIGN(®) /* =0 */
This code:

result=sign(x)
is equivalent to:
if x=0 then result=p

else if x>0 then result=1
else result=-1

The SIGN function returns the value of 1, 0, or -1 depending on the value of the number that is passed to it.
If the number is greater than zero, SIGN returns 1. If the number is less than zero, SIGN returns -1.

If the number is zero, SIGN returns 0.

0 9/32

= Numeric Functions > TRUNC Function

»— TRUNC(number —r—l—) —
,n

Examples:
TRUNC(345.678) /EE=S34 5%,
TRUNC(345.678,2) /* = 345.67 */

TRUNC(345.678,6) /* 345.678000 */

The TRUNC function truncates a number at n decimal places. The default value for n is 0.
If n is omitted, the number will be truncated with zero decimal places and an integer will be returned.

With TRUNC, excess numeric values will be dropped, not rounded.

0 10/32

»— FORMAT(number [T)

Al I [
before - - |. JI.
expp l-expt-

after

If the number is to be displayed in scientific notation, expp specifies the
number of places to set aside for the exponent part of the output. If expp
is not specified, REXX will use whatever amount of space is necessary.

FORMAT rounds numbers and formats them. The number must be passed to FORMAT. All other parameters are optional.

The before and after operands specify how many places before and after the decimal point. If they are not specified, the number will contain the same number of places that it did before the
FORMAT operation.

The expp and expt operands define how and when exponent values will be displayed.

Mouse-over the syntax for a description of each parameter.

0 11/32 PN NG

umns 00001 00
11

- CS

random(1, 300)

7,n.8,n.9,n.1@8,n.11,n.
,min(n.&,n.9,n.1@,n.11,r

OO BN
| i
o
~N

933333333333

Bottom of Data

Click Play to see some of the numeric functions and how they can be used.

0 121732 C

= Justification Functions > Justification Functions List

CENTRE or CENTER

JUSTIFY

LEFT

RIGHT
STRIP

Returns a string of a specific length with the specified string centered within it. If they are
necessary, the pad characters can also be specified.

Formats a given string by adding pad characters between words in the string to justify to
both left and right margins of a specified length.

Returns a string of a specified length containing the left-most characters of the string.
Returns a string of a specified length containing the right-most characters of the string.

Removes a specified number of leading or trailing characters from a given string.

Justification functions enable data to be formatted, particularly for reporting display purposes.

Listed above are the functions that help format data.

0 14132

»—— JUSTIFY(string,length)—¢
,pad
\
Examples:
JUSTIFY('Now is the time',21) /% 'Now s the time' */
JUSTIFY('Now is the time',21,'*"') /% 'Now**Fjghekthex¥itimpe' */
JUSTIFY('Now is the time',12) /* 'Now is the t' */

The JUSTIFY function returns string formatted and justified to both margins. The pad character is used between blank delimited words to make up characters if string is shorter than Tength.
If string is longer than Tength, it will be truncated to the next space, if available, and then justified by using the remaining words.

The default pad character is a blank space.

Note: JUSTIFY is a non-SAA built-in function and is currently only available under TSO/E and VM.

0 15/32 I ¢

= Justification Functions > CENTER or CENTRE Function

CENTRE(T string,length) —«
»—[CENTER(LsPad a

Examples:
CENTER('Datatrain',13) /* ' patatrain ' ¥/
CENTER('Datatrain',13,'*') /¥ '**patatrain¥*' ¥/
CENTER('Datatrain',5) /* 'tatra' */

The CENTER function returns a string centered within a character sequence of 1ength characters long.

If the string is longer than Tength, truncation occurs. If the string is shorter than Tength, the pad character is used to make up the Tength.

The pad character is a blank space by default.

0 16/32

»—— LEFT(string,length [T)=
,pad
Examples
LEFT('Now is the time',11) /% 'Now is the ' %/
LEFT('Datatrain', 11, '*") /% 'Datatrain®*' %/
LEFT('Datatrain',4) /* 'Data' */

The LEFT function starts at the left of string and returns the number of characters specified by Tength.

If string is shorter than lTength, the string is padded to the right with the pad character. The default pad character is a blank space. If string is longer than Tength, truncation occurs on the
right.

Specifying LEFT(string, 6) is the same as specifying the following:

SUBSTR(string,1,6)

0 17/32 e <

= Justification Functions > RIGHT Function

»—— RIGHT(string,length [T)=
,pad
Examples:
RIGHT('Now is the time',11) /% 'is the time' */
RIGHT('Datatrain', 11, '*") /* '**patatrain' */
RIGHT('Datatrain',5) /% 'train' */

The RIGHT function starts at the right of string and returns the number of characters specified by Tength.

If string is shorter than Tength, the string is padded to the left with the pad character. The default pad character is a blank space.

If string is longer than Tength, truncation occurs on the left.

0 18/32

= Justification Functions > SPACE Function

»w—— SPACE(string |.)
' LnJ L,padJ

Examples:

SPACE(' Data train ') /* 'Data train' */
SPACE('Data train ',2,'*') /% 'Data**train' */
SPACE('Data train ",,'+") /% 'Datattrain' */
SPACE('Data train ',0,'+') /* 'Datatrain' */

The SPACE function replaces all spaces between each word in string with the number of pad characters specified by n. Leading and trailing blanks are always removed.

The default for n is 1, and the default for pad is a blank space.

0 19/32

= Justification Functions > STRIP Function

»w— STRIP(string |. T) —

’ |-optionJ |-,o::harJ

option can be:

Option Meaning Description
B Both Removes both leading and trailing chars from string. This is
the default.
L Leading Removes leading char from string.
T Trailing Removes trailing char from string.

The STRIP function returns string with the leading, trailing, or both chars removed, depending on the value of option. The default for char is a blank space.

= Justification Functions > STRIP Function

»— STRIP(string) —

’ |-optionJ |-,charJ

\

Examples:
Option Meaning Description
B Both STRIP(" A B) R B' =
STRIP(™*A***B**''B""") /% "Av%*g’ */
L Leading STRIP(™*A***B**''L'""") J* VARRERERE & [
T Trailing STRIP(**A™B™ 'T'.") [F Deepiskgt o/
STRIP(*A*B* 'trailing',""} ALY\l : o

Any characters that follow the first character of the option parameter are ignored, but specifying the entire word shown in the "Meaning" column above helps to document the program.

Note that option is not case-sensitive and the first character of option, if used, is the only character that is required.

0 21132 "y

= Justification Functions > Justification Examples

Click Play to see some of the justification functions and how they are used.

0 22132 (6

columns
roll

0001 0007

> CSR

-

Binary Decimal Hex

0000 00 \ 0
0001 of 1
0010 02 | 2
0011 03 3
0100 04 4
0101 05 5
0110 06 6
0111 07 7
1000 08 8
1001 09 9
1010 10 A
1011 1 B
1100 12 c
1101 13 D
1110 14 E
1111 15 F

Electronic components have two basic states: on or off, and open or closed. Computers must therefore work at the very base level, binary, which is also called base 2. This means that all states
are referred to as 0 or 1, which are the two numbers allowed in base 2.

It is difficult to read large amounts of zeros and ones so binary digits are grouped into groups of 4, giving 16 combinations from 0000 to 1111. Each of these 16 combinations is represented by the
characters 0-9 and the letters A-F. These characters are referred to as hex characters or a base 16 and they can also be represented as a decimal number or base 10. For example, Binary 1111 is
the same as hex "F" and decimal 15.

Click Play to see the binary, decimal, and hex representations of the numbers 0-15.

0 24132 (6

Function Conversion Example

B2X Binary to hexadecimal B2X('101') * returns '5' *

c2D Character to decimal cz2o('a") /* returns '129' *f

Cc2X Character to hexadecimal | €2x('72s") /* returns 'F7F2A2" ¥/

D2C Decimal to character D2C(129) /* returns (a) !

D2X Decimal to hexadecimal D2X(15) * returns 'F' *

X2B Hexadecimal to binary X2B('F") /* returns "1111° =

% X2C Hexadecimal to character = X2C('F7F2a2') I* retumns '72s' /]
~ X2D Hexadecimal to decimal x2D('81") /* returns '129" J

To represent displayed and stored characters in the computer, two hex characters are joined to enable a total of 256 characters, which is 16 x 16, to be defined. Approximately 100 of these are
"displayable" and the rest are used to instruct the computer on what to do. Displayable hex values are referred to as character format.

Although hex is the usual format to display non-displayable characters, it is possible to display and manipulate data in binary, hex, decimal, and character formats. For example, the displayable
character A on an IBM mainframe can also he referred to as hex c1, decimal 193, or hinary 11000001.

Listed above are conversion functions that are used to convert data from one format to another.

0 25/32 Dol NG

EBCDIC

Character TEST

C2X('TEST') E3CSE2E3

X2D('E3C5E2E3") 3821396707

X2B('E3C5E2E3"') 11100011110001011110001011100011
ASCII

Character TEST

C2X('TEST'") 54455354

X2D('54455354") 1413829460

X2B('54455354"') 01010100010001010101001101610100

The two different hex representation standards that are used in the most common computers are EBCDIC and ASCII.

EBCDIC is used by most IBM mainframe systems, such as z/OS and z/VM. ASCII is used by most mid-range and small systems, such as PCs. Because of this difference, applications using these
functions are rarely ported from one platform to another.

Click Play to see an example of the difference between ASCII and EBCDIC conversions.

0 2632 c

= Conversion Functions > Binary Logic Functions

BITAND('0101'b, '@pel'b) - Binary "and" logic. If both values are 1, the

result is 1.
@181 "and"
0001

BITOR('@lel'b, '@e0l'b) - Binary "or" logic, if either value is 1, the
result is 1. @161 "or"
0001

BITXOR('©101'b, '@001'b) - Binary “"exclusive or" logic. If either value

is 1, but not both, olol “or"
00061 BITOR('T','E")
éié; UTY -> "54"x (ASCII) -> 01010100
"E" -> "45"x (ASCII) -> 01009101

"U" <= "55"x (ASCII) <- @l@lelel

Three related functions are used for the Boolean logic operations of "and", "or", and "exclusive or".

These functions enable two binary strings to be compared and Boolean logic to be performed at a bit level. Using bit flags can save space and improve the efficiency of programs.

Click Play to see how the three binary logic functions calculate their results.

0 27132 C

