NTersKitLL
learning

REXX Environment Functions

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

0 1/29

Objectives

REXX Environment Functions

In this module, you will explore the REXX environment functions that return settings defined by the system and the REXX program code itself.

After completing this module, you will be able to:

« |dentify How to Use the Miscellaneous Environmental Functions
« |dentify How to Use Error Condition Environmental Functions
« |dentify How to Use System Environmental Functions

String functions Perform various comparison, interrogation, and manipulation actions on data

strings.
Text and word functions Interrogate and manipulate words and specific data within a string.
Justification functions Justify and format text and data strings.
Numeric functions Interrogate and format numeric values.
Character conversion functions Convert and manipulate binary, hex, and character values.

Interrogate the environment that the REXX program is running under, and

Environment functions return settings and definitions.

Stream 1/O functions Used for file processing on many platforms.

For the purposes of this course, we have divided the built-in functions into the groups listed above.

You will now focus on the environment functions, which return values related to the environment that the REXX program is running under, and values specifically related to the current execution of
the program.

To help you understand the environment functions group, we have divided it into three subgroups: miscellaneous, error condition, and system environment functions.

0 3129 < <

= Miscellaneous Environment Functions > Miscellaneous Functions

ADDRESS
DIGITS
FORM
Fuzz
QUEUED
VALUE

TRACE
EXTERNALS
LINESIZE

Returns the name of the environment of the host machine to which commands are being submitted
Returns the current setting of NUMERIC DIGITS

Returns the current setting of NUMERIC FORM

Returns the current setting of NUMERIC FUZZ

Returns the number of lines remaining in the program stack or external data queue

Returns the value of a specified REXX symbol; useful if a variable contains the name of another
variable

Returns the current value of the TRACE keyword instruction and optionally sets it to a new value
Returns the number of elements in the terminal input queue; always returns 0 in TSO/E

Returns the current terminal line width minus 1; LINESIZE is 32 if REXX is running in TSO/E

background

The first subgroup that you will look at is a miscellaneous group that interrogates several different areas and values used by the program.

The EXTERNALS and LINESIZE functions are not covered in this course and the TRACE function was reviewed earlier.

O

W——— ADDRESS() »

Example:
defaultenv = ADDRESS() /* returns "TSO" */

ADDRESS ISPEXEC /*Changes default HCE */

ADDRESS VALUE defaultenv /*resets HCE to original*/

The ADDRESS function has no parameters and returns the current default host command environment (HCE). This function will save the current environment in a variable before changing it so it
can be used later to return to the original HCE.

0 5/29 e <

= Miscellaneous Environment Functions > DIGITS, FUZZ, and FORM Functions

7

‘ »———-DIGITS() P4
w——-FUZZ() .
w——-FORM() 4

\

Example:

digitdef = digits(Q returns current setting of
"NUMERIC DIGITS"

returns current setting O‘F
"NUMERIC Fuzz"

* returns current setting of °
"NUMERIC FORM"

fuzzdef = fuzz()

formdef = form(Q)

B R
WOk o X
'\..\ \'\. ‘\ X \

The DIGITS, FUZZ, and FORM functions return the current value set by the system or the NUMERIC keyword instruction for the DIGITS, FUZZ, and FORM parameters.

Like the ADDRESS function, these functions have no parameters but are used to save the current values before changes are made so they can be reset at a later stage.

06/29

»————QUEUED() ol

\
Example:

QUEUE datal
PUSH name
QUEUE address

Lines = QUEUED() /*returns "3"*/

Do num = 1 while QUEVED() > @ /*set stack.l, 2 an 3 =/
PULL stack.num /* to the lines saved */
End /* in the stack */f

The external data queue or stack is used to temporarily store records or data to be used by other subsystems or REXX routines in this address space. The QUEUED function can be used to
determine the number of records stored in the stack.

The above example shows how a loop can be coded to PULL all the records from the stack by using the QUEUED function as a control value, and store them in a compound variable.

The QUEUED function has no parameters.

O 71 ;o<

w——VALUE(expression

) ——4¢
|— y— newvalueJ

Example:

/*(given that namel="FRED", name2="Mary" and name3="George")*/

Do num = 1 to 3 /*("name"num) evaluates®/
say "Hello "value("name"num) /* to "namel" in the ¥,
End /* first loop, etc. */

This code would result in:

Hello Fred
Hello Mmary
Hello George

The VALUE function enables symbols or variable names to be expressions that are evaluated before symbolic substitution is performed. In effect, it enables a variable name to be a variable.
The expression passed as a parameter is evaluated and then the interpreter looks for a variable of that name and returns its value. Optionally, it can also reset the value to new_value.

Some environments, such as ISPF, cannot process compound variables. The above example shows how VALUE can be used for numbered simple variables.

0 8/29 e <

= Error Condition Environment Functions > Error Condition

CONDITION Returns the condition information, such as condition name, description, instruction, and status
associated with the current trapped condition

SOURCELINE Returns the line number of the final line in a REXX program or the text of a specified line number in
a REXX program

ERRORTEXT Returns the error text associated with a given error number

The SIGNAL ON condition or CALL ON condition keyword instructions can be used to define error condition traps with the SIGL system variable containing the line number of the code that
triggered the trap.

The CONDITION, ERRORTEXT, and SOURCELINE functions are used to analyze information about the error and inform the programmer.

0 10/29 "y

= Error Condition Environment Functions > CONDITION Function

w—— CONDITION(

»d

) 2
|— option —,

Examples

Signal on failure name trapl

TRAPL:
SAY "A "CONDITION("C") "condition trap occurred "
SAY "and was executed by a "CONDITION()" instruction"
SAY "that is currently "CONDITION(S)"."

If a failure occurred, the result of this code would look like this:

A FAILURE condition trap occurred]
and was executed by a SIGNAL instruction
that is currently OFF.

The CONDITION function describes how the condition trap was triggered with CALL or SIGNAL, and the cause of the trap being triggered. The options that can be coded are:

condition - Returns the name of the condition trap: ERROR, FAILURE, HALT, NOVALUE, or SYNTAX
1nstruction - This is the default; returns the instruction that set the trap condition: CALL or SIGNAL
status - Returns the current status of the trap that was triggered: ON, OFF, or DELAY

pescription - Returns a character string describing the current trapped condition

If coded, only the first character of the option is required. All other characters are ignored.

0 11/29

Any string associated with the halt request. This
ERROR can be the null string if no string was provided.

Example:

FAILURE
SIGNAL ON HALT

Loop forever [*ATTN key pressed here*/

HALT
HALT:
SAY "Halt reason:" CONDITION{"D")
NOVALUE Would result in:
Halt reason:
SYNTAX That is, no string is associated in this case.

When using the Description option of the CONDITION function, the result is a description string related to the current triggered trap.

The format of this string varies depending on the type of trap triggered. For example, if the trap is defined by a NOVALUE condition, the descriptive string will contain the variable name that is
detected with no value.

Mouse-over each trap condition to see the value of the CONDITION("D") descriptive string.

0 12129 Y ¢

‘ »— ERRORTEXT(number) P

\
Example:

/* REXX */

TRACE O

signal on syntax
numeric digits eng

exit

SYNTAX:

SAY "A Syntax error occurred on line "SIGL"."

SAY "Error message of return code "RC": "errortext(RC)
EXit

This code would result in:

A Syntax error occurred on line 3.
Error message of return code 26: Invalid whole Number

When a syntax error occurs in REXX processing, the message may not appear on the screen under certain circumstances, or it may be necessary to interrogate the message to determine the
recovery process that is required.

Syntax errors all produce a return code that is saved in the system variable RC. The ERRORTEXT function can be used to save or display the error message associated with a particular syntax
return code.

Shown here is the syntax of the ERRORTEXT function.

0 13/29 e <

r
E »— SOURCELINE(number) 4
\

Example:

/% REXX */

TRACE O

signal on syntax
numeric digits eng
exit

SYNTAX:

say "A Syntax error occurred on line “SIGL":"

say sourceline(SIiGL)'""
say "Error message of return code "RC": "errortext(RC)
Exit

This code would result in:

A Syntax error occurred on line 3.
"numeric digits eng" .
Error message of return code 26: Invalid whole Number

Although CONDITION(D) often provides useful information, it does not always indicate the actual line of code from which the condition trap was triggered.

The SOURCELINE function returns the line of code from a specific line in the program. As the system variable SIGL contains the line number of the code that triggered a condition trap, it is
possible to interrogate and display the problem code.

Shown here is the syntax of the SOURCELINE function.

0 14129 "y

/* REXX */

signal on syntax name trapl
CALL ON ERROR name trapl
Signal on failure name trapl
signal on novalue name trapl

exit
Trapl:

say "A "condition("C") occurred on line "SIGL":"
say '"'sourceline(sicL)'™'
SELECT
wgen CONDITION(C"C") = "SYNTAX" then
{o]

For NOVALUE conditions, display the uninitialized variable.

Say "Syntax error '"CONDITION(D)"' occurred with "
Say "return code "RC". Reason: "errortext(RC) For example:

en
when CONDITION("C™") "ERROR" | ,
CONDITION("C") = "FAILURE" then
Say "command Error return code: "RC"."

A NOVALUE trap occurred on line 45:
"saY Hello name"
variable HELLO has not been set.

hen CONDITION("C") = "NOVALUE" then
say "variable "CONDITION(D) has not been set."

otherwise nop

END

1f condition() = "caLL" and RC < 8 then return
Do while queued() > ©

Pull

End

exit

These functions help diagnose and debug problems when coding error routines. The above code could be coded to set up a generic error routine by using several of the facilities and functions you
have just explored.

Mouse-over the code for a description of each of the clauses.

0 15/29 e <

= System Environment Functions > System Environmental Functions

DATE Returns the system date in one of a variety of optional formats
TIME Returns the system time in one of a variety of optional formats
USERID Returns the name of the TSO/E userid: z/OS platform only

The system environmental functions listed above interrogate values set by the system or platform that the REXX program is running on.

= System Environment Functions > DATE Function

date_format1

(W—— DATE — I:

L input_date
S L date_format2
Jinput_date
L L date_format2 d

The DATE function can return a date based value from input_date. If input_date is not specified, the default is the current date.

If date_formatl or date_format2 are not specified, the default option is Normal (dd mon yyy); date_formatl is used to specify the output format of a date.

date_format2 is used to define to REXX the current format of input_date.

input_date is a date to be converted to date_formatl from date_format2.

0 18/29

= System Environment Functions > DATE Options

" W——DATE-()—4
date_format1 [1
Input_date date_format2
Jinput_date
\ L date_format2 d
Option Meaning Description
B Base The number of completed days since 1 January 0001
C Century Returns the number of completed days this century 1 (")
D Days Returns the number of days so far this year in the format ddd
E European Date in the format: dd/mm/yy
J Julian Date in the format: yyddd (")
M Month Returns the English name of the current month (**)
N Normal Date in the format: dd mon yyyy
0 Ordered Date in the format: yy/mm/dd
S Standard Date in the format: yyyymmdd
u USA Date in the format: mm/dd/yy
W Weekday Returns the English name of the current day of the week (")

The 11 available date formats are listed here with their descriptions. Any of these formats can be used for date_formatl or date_format2.

* - When used for date_formatl, this format is only valid when input_date is not specified.
** - This format is only valid for date_format1.

0 19/29

)—«

[W——DATE—(l:

date_format1
I. ,Input_date ﬁ_‘
date_format2

,input_date
L date_format2 J
Option Meaning Example
DATE(Q) I 1 May 2008
Normal DATE(, '01/27/08"','Usa"') I* 27 Jan 2008

B Base DATE('B') [* 730240
C Century DATE('C') 122
D Days DATE('Days') 122
E European DATE('Euro','122','8") [01/05/08
J Julian DATE('JULIAN') /700122
M Month DATE('Month"') I* May
N Normal DATE('N','01/27/08"','U") I* 27 Jan 2008
0 Ordered DATE('0') I 00/05/08
S Standard DATE('S') I* 20080501
u USA DATE('usa') /* 05/01/08
w Weekday DATE('"WEEKDAY') /* Monday

DATE('wednesday') I Monday

Shown above are examples of the DATE function options and their results. Where a date is not specified, assume a date of May 1, 2008. Dates can also be calculated by converting a date to the

base date, adding or subtracting a number, and converting the date back, for example:

dl = DATE("B")+30 /*convert today's date to a Base date and adds 30%/

d2 = date("N",d1,"B") /* convert back to a Normal from Base format */

This is the same as:

d2 = DATE("N",DATE("B")+30,"B")

Note: date_format parameters ignore any characters after the first character; however, specifying the value shown in the "Meaning" column helps to document the program; date_format
parameters are not case-sensitive, but they can be variables.

0 20129 < <

= System Environment Functions > TIME Function

p
»— TIME([]) "
option
Option Meaning Example
C Civil Time in the format: hh:mmxx
E Elapsed Returns the number of seconds and microseconds since the elapsed
time clock was started or reset
H Hours Returns hours since midnight
L Long Time in the format: hh:mm:ss.uuuuuu
M Minutes Returns minutes since midnight
N Normal Time in the format: hh:mm:ss
R Reset Returns the number of seconds and microseconds since the elapsed
time clock was started or reset: Resets elapsed time
S Seconds Returns seconds since midnight

The TIME function without an option returns the time in 24-hour clock format (hh:mm:ss).

The Option parameter can be used to return the time in alternative formats, or to control and query the elapsed-time clock.

021/29

»— TIME([]) "
option
Option Meaning Example

Normal TIME() /* 20:07:59 R
C Civil TIME('C") /% 8:87pm */
H Hours TIME('Hours') /" 20 R
L Long TIME('long') /* 20:07:59.000000 */
M Minutes TIME('Min.") /* 1207 */
N Normal TIME('normal') /* 2@:07:59
S Seconds TIME('Secs') /* 72479 =

These examples of the TIME function options assume a time of 20 hours, 7 minutes, 59 seconds.

If used, the first character of Option is the only character that is required. Any characters that follow it are ignored, but specifying the full meaning helps to document your program. Option is not
case-sensitive.

0 22129 e <

—TIME(—]) g
option

Example:

SAY TIME('E') /* @ Returns and starts the clock */

SAY TIME('E') /* 0.000267 - Returns seconds since clock started */

SAY TIMEC'E') /* ©.000478 */

SAY TIME('R') /* ©.000683 - Returns seconds & resets the clock */

The TIME function can also be used to measure elapsed or real time intervals, which are accurate to one microsecond.

When TIME is first called by using the E or R option, it returns 0 and starts the real-time clock. Calling TIME again by using R returns the elapsed time since the E or R option was last used, and
resets the real-time clock to 0. Subsequent calls to TIME by using E return the elapsed time since the first call, or since the last call by using R.

The above example shows a series of TIME functions. A real program would time something, such as how long it took to input an answer to a question.

0 23129 e <

»— USERID()

v
-~

The USERID function returns the logon ID of a user running in the TSO/E address space. In non-TSO/E environments, the result could depend on the requirements of the data center. The USERID
function has no parameters.

USERID() /* USERL1 - perhaps! */

Note: USERID is @ non-SAA built-in function and is currently only available under TSO/E and VM.

024/29 e < >

