mntersKitL
learning

TSO/E File Control

By proceeding with this courseware you agree with these terms and conditions. Interskill Learning Pty. Ltd. © 2019

0 1/28

Objectives

TSO/E File Control

In this module, you will discover how the EXECIO TSO/E REXX command is used to read, write, and update data sets in the z/OS TSO/E
environment.

After completing this module, you will be able to:
« |dentify How to Read z/OS Data Sets By Using REXX

« |dentify How to Write to z/OS Data Sets By Using REXX
« |dentify How to Update z/OS Data Sets By Using REXX

Program A
OPEN INFILE
LOOP

READ INFILE
ENDLOOP

CLOSE INFILE

DATA.SET1

When all required data set p ing is plete. the data set is closed by the CLOSE macro or instruction.

Traditional languages like COBOL and PLI follow these three steps to process data sets after they have been allocated to the program:

1. Open the data set.

2. Process the records from the data set.
3. Close the data set.

These steps are separate instructions in the program and they must be performed in the correct order for the program to work.

0 3/28 (64

Ww—EXECIO—{lines DISKR ddname
‘g—-rEDISKW I—Ilmam.lm—l
DISKRU

(-
L4

' LIFO Lskir- Lopend Lemisd L) "

FIFO
—STEM varname-

The number of lines to be read or written in this operation. Until the data set is closed, the system
will "remember" which line is to be processed next by using a current row pointer (CRP).

The ENCIO command was used to perform all three stages of file processing on the original platform on which REXX was developed. A version of this command was ported to the MVS system
platform under TSO/E so this is generally used for file processing in this environment when using REXX. The EXECIO command can only be used in REXX programs.

REXX programs can only directly process sequential data sets and individual members of partitioned data sets (PDS). Other data set organizations, such as VSAM, must be converted before
REXX can process their records.

Mouse-over the syntax of the EXECIO command for a description of each parameter.

0 4128 RS

Address space

REXX program

Address TSO
"ALLOC DD(OUTFILE) DA('TEST.DATA') ",
" OLD REUSE"™

TEST.DATA

The disposition, in this case OLD, indicates how the data set will be allocated. \When writing
to a data set, if OLD or SHR is used, all existing records will be deleted when the data set is
opened. If MOD is specified, records will be added to the end of the data set. SHR is not

recommended for output operations. When specifying NEW, other parameters are required.

Before using EXECIO, the required data set must be allocated to the address space that the REXX is running under. This can be done with a TSO ALLOC command when running under TSO/E, or
with a JCL DD statement defined in the procedure or JOB that initiates the address space, that is, the TSO logon procedure or a batch JOB.

Standard dispositions of NEW, SHR, OLD, or MOD apply in both cases and should be carefully considered when reading or writing data sets. This is normally NEW or OLD for writing, SHR for
reading, and MOD to enable records to be written to the end of a data set. After using the ALLOC command in a REXX program, it should be released back to the system by using the FREE
command.

Click Play to see how data sets can be allocated for use by REXX programs.

0 5/28 >

Reading Data Sets in to the stack with EXECIO

" EXECIO * DISKR INFILE ([FINIS] "

FINIS indicates that the data set should be closed when the operation is complete.
If FINIS is omitted, the data set will remain open for future use. In this instance, as
all records have been read. no further actions would be possible with this data set.

After the data set has been allocated and the ddname is known, it can be read by the EXECIO command using the DISKR parameter.

The simplest form of the EXECIO command is shown above. This command will open the data set allocated to the ddname INFILE, read all the records from the data set, place them on to the
stack, and then close the file.

Mouse-over the command for a description of each parameter.

0 6/28 o«

= Reading Data Sets > Example

EDIT SERL.REXX.EXEC(READ2STK) Columns @0
Command ===: Scroll

R R R R R R R Top of Data ‘
is program reads records into the

) 2 t““~ SO
alloc dd(infile) da('test.data') shr reuse” J

infile (finis " Allocate the data set to the program as a ddname
d() > @ of INFILE. Fully qualified data set names must be
enclosed in single quotes. As the file is only being
as required) */ read, the SHR disposition is being used. The
REUSE parameter is coded so if the program fails
before freeing it, the allocate command will not fail
when the program is rerun. As with all REXX
instructions, uppercase is optional

1

TEST.DATA

This section of code shows how the ALLOC and EXECIO commands can be used to process all the records from a data set and place them in the stack.

Click Play to see the effect that each section of code has on the data set.

07/28 »—

EDIT R1.REXX.EXEC(READ2STM) Columns 0@

Command Scroll |

) The records can now be processed by using standard
iterative DO/END group logic. Variables are still set to their

yrogram

d(infile) da('tes
necessary, unlike using the stack

infile (STEM LINE.finis
ine.@ i
process records as required) */

> dd(infile)"

Function pool
Line.0=4

Line.4 = [Record|
Line.3= [Record]
Line.2 = [Record]
Line.1 = [Record]

TEST.DATA

More commonly, records from data sets are saved into compound variables. This is achieved by specifying the STEM varname option;
varname defines the prefix of a simple or compound variable name to be used, which is followed by the number of the record extracted by this operation. The variable varname0 is set to the total

number of records extracted in this operation. The variables are treated as compound variables if varname ends ina ".".

Technically, the return code from the EXECIO command should always be checked to ensure the operation worked successfully. Valid return codes are: 0 - Successful completion; 1 - Data was
truncated; 2 - EOF reached; 4 - Empty data set; 20 - Severe error.

Click Play to see an example of EXECIO reading into stem variables.

0 8/28 C

columns
Sscroll
Top of Dat Ewws
This progr 3 records from a

(infile) da('test.data') shr

infile (STEM LINE.

1 leave

ecords as required) */

diskr infile (FINIS "M siep 1. Open the data set if not open and read the first record

"execio 1 diskr infile (stem line. "

Step 2. Check o see if EOF has been reached.
If rc \= 6 then leave

Step 3. If not, process and record and then repeat steps 1 and 2.

By specifying "0" lines, EXECIO does not perform any say line.1l

record processing. However, the FINIS option causes the
data set to be closed at the end of the EXECIO operation. Step 4. If EOF, close the data set.

"execio @ diskr infile (FINIS '

Sometimes the data set to be read contains more records than can be stored in the address space being used by the REXX program. This typically exceeds 100,000 records, depending on the
data center's standards, so records can only be read in smaller numbers and, for logical purposes, one at a time. The stack or stem variables can be used. The steps in this process are:

1. Open the data set if not open and read the first record.

2. Check to see if EOF has been reached.

3. If not, process record and then repeat steps 1 and 2.

4. If EOF, close the data set.

Click Play to see how to perform these actions.

09/28 C

= Writing to Data Sets > DISKW Parameter

v

»—EXECIOﬂnes TDISKR— ddname
T

- N
"I_ J Lopend Lemsd L)d 7
STEM varnam

The DISKW parameter indicates that a "write" or "output” operation is to be performed in the data set. I

The linenum parameter and FIFO, LIFO, and SKIP options have no meaning or effect when performing DISKW operauons.l

The DISKW parameter is used to write to a data set in much the same way as DISKR is used to read one. Records can be written from the stack or compound variables.
However, some EXECIO options have no effect when using DISKW and the "*" (arbitrary lines) parameter can cause problems if used.

Click Play to see the parameters that have no effect when using the DISKW parameter.

0 11/28 C

Allocating data sets for output

Using JCL

//OUTPUT DD DSN=OUT.DATA,DISP=(OLD,KEEP).......

‘ Disposition parameter

Using the ALLLOC command
"ALLOC DD(OUTPUT) DA('OUT.DATA') OLD "

When allocating a data set for output, take care when defining the data set disposition regardless of whether the data set is allocated by using the ALLOC command or JCL. The implications of
each disposition status should be clearly understood:

NEW - Indicates the data set is being created and used for the first time.

SHR - Indicates the data can be used by other users at the same time. This is not recommended when writing to a data set as data
corruption may occur; recommended for read operations only.

OLD - Indicates the data set already exists and should be dedicated to this operation. If the data set is opened as "output” for writing,
any existing data will be overwritten.

MOD - Indicates that any data written to this data set will be added to the end of the data set. When opened, the CRP will be placed at

0 12/28 Pl I

columns 0@
__ Scroll

EDIT X.EXEC(WRITESTK)
Command

Th progrs:
SO

dd(outfile

The "' indicates to keep writing until a blank
record is encountered. As no more records are
available in the stack, the keyboard is used as
input until Enter is pressed with no data.

(f

w outfile (finis "

=

%E
B
B e

TEST.DATA

If the STEM option on the EXECIO command is not specified when writing records to a data set, it will get the records from the stack.

When the "*" parameter is used to specify the number of lines to be written, EXECIO keeps writing until it encounters either a null line or an uninitialized compound variable. If all records have been
written and no null lines or uninitialized variables were encountered, EXECIO waits for input from the keyboard and continues to write any data typed when Enter is pressed. It does this until Enter

is pressed without any data.

Click Play to see an example of records being written from the stack.

0 13/28 P

= Writing to Data Sets > Counters for Stacked Records

EDIT | .REXX.EXEC(WRI) columns 00001

Command -
Top of Data

rite records from t

utfile) da('test.data') old reuse"

records as requi —

In this example, the varable recno contains the number of records
multiplied by 2, which are placed in the stack. This can be used
ECISSIE RIS IE) instead of " to specify the exact number of lines to write.

Record |
Null

TEST.DATA

Problems can also occur if blank records are required to be written before the end of all the data.

It is recommended that a counter is kept within the REXX code for each time a record is created for writing, and the counter is used in the EXECIO command instead of "*".

Click Play to see an example of records being written from the stack.

014/28 »—

= Writing to Data Sets > Writing from Compound Variables

EDIT USER1.REXX.EXEC(WRTS) Columns 00001 ¢
Command

In this example. r1 will be 1 greater than the
number of records created as it will increment
to 1 more than recno before exiting the loop.

finis

Function pool

Line.5 =
Line.4 = | Record
Line.3 = | Record
Line.2 = [Record |
Line.1 = [Record |

TEST.DATA

As an alternative to the stack, compound variables can be used to store records and write them to a data set. Again, a counter should be used when writing records to a data set.
To use compound variables, the STEM varname option should be used on the EXECIO command where varname is the compound variable stem.

Click Play to see how compound variables are used for writing data to data sets.

0 15/28 (6

EDIT USERL.R XEC(LRGWRITE) columns
Command = _ _ scroll
. o Top of Data ok o e
arge numb

stem line. finis

After writing all required records, the data set must be closed. As no more records
are required to be written, the lines specified is 0 with the FINIS option included.

When large amounts of data are required to be written to a data set, and the number of records greatly exceeds 100,000, storage restraints may prevent them from being stored either in the stack
or in compound variables.

In this case, it is usually necessary to write a single record at a time. The above example shows some code that could be used to write single records to a data set.

Mouse-over the code for descriptions of each section.

0 16/28 S«

"EXECIO 1 DISKW UPFILE (STEM OUT "

s

Function pool
REXX program outl= [Regordl
< » Data4 = Record
- " | out = lined"new data" Data3 = Record
R Data2 = Record]
Data1 = Record
TEST.DATA

The DISKRU parameter enables the data set to be both read and written to. When the data set is read, the last record to be retrieved can be changed by executing a write action using DISKW.
Any write action will replace the last record read.

This is the only situation where different DISKx parameters can be used on the same data set without closing it first. Because only one record can be updated at a time, DISKRU operations are
usually performed singularly, that is, record by record. The stack or the compound variable can be used to store the records.

Click Play to see an example of the DISKRU operation.

018/28 C <

"EXECIO 4 DISKRU UPFILE (STEM DATA™

Function pool

REXX program]

Datad =
Data3 =
Data2 = Record |
Data1 = Record]

ecol

TEST.DATA

The DISKRU parameter enables the data set to be both read and written to. When the data set is read, the last record to be retrieved can be changed by executing a write action using DISKW.
Any write action will replace the last record read.

This is the only situation where different DISKx parameters can be used on the same data set without closing it first. Because only one record can be updated at a time, DISKRU operations are
usually performed singularly, that is, record by record. The stack or the compound variable can be used to store the records.

Click Play to see an example of the DISKRU operation.

018/28 > 5|«

EDIT USER1.REXX.) columns
Command - Scroll
Top of Data

ds that

This conditional statement determines if the record is to be changed. If so, it
sets the new value. As the variable name and the actual record are not
physically linked, the new value could be in the same variable or a new one.

This example shows how records can be read one at a time and changed as required. A data set that is to be updated should be allocated a disposition of OLD because a NEW data set has no

records to be updated. MOD will not work as the CRP is placed at the end of the data set, and a read operation will only receive an end of file (EOF). Records cannot be added to a data set by
using DISKRU.

Notice that the data set is read in the same way that a large data set would be read. The final EXECIO operation to close the data set can be a DISKRU or a DISKW operation.

Mouse-over the code for a description of each section.

0 19/28 e <

EDIT USER1.REXX.EX UPDATE) columns

Command
. * Top of Data

)000 XX ; : updates every th

0002 A

)000

)0004

N)

)00

sk

i then leavel
"execio 1 DISKRU datafile (stem dummy’
‘ I then eave|

Read the next record. For the first iteration of this loop, this record would be record 12. The
record will be read into a variable called DUMMY1. This variable will not be used again.

In some instances, the specific record number that must be updated in the data set is known. Using the previous method, however, all earlier records would have to be read first. The LINENUM
parameter enables a DISKRU or DISKR operation to start at a specific record.

Alternatively, the SKIP option can be used to skip a number of lines without placing them in the stack or variables. The next DISKR or DISKRU operation reads the following line in the data set. For
example, if 23 lines are skipped when the data set is first opened, the next read operation extracts the 24th record.

Mouse-over the code for a description of each section.

020/28 vl G

Copying selected records

Function pool

2
=4

eCco

‘ REXX program

/*copy every second record to new DS*/

' :sx:c:o * DISKR infile (stem in. finis” |
docl=1toin0
out.o1 =incit Tacord
cl=cl+1 [Record]
Record ol=01+1 Record
end
“execio "01-1" DISKW ofile (stem out. Finis" N /
INFILE OFILE

The EXECIO command cannot delete individual records by itself. It can only be used to read all the records and copy back the required records. This example shows how one file can be read and
selected records written out to another. The original file can then be deleted and the new one renamed.

Alternatively, all the records can be read first by a DISKR operation and, after closing the data set, a DISKW operation can be used to rewrite the data in the original file.

Click Play to see how selected records can be written to a file.

021/28 C

= Updating Data Sets > Updating Records

Updating records

Function pool

[
REXX program
- * blank out every secoend record in the DS*/
—— "EXECIO 1 DISKRU infile (stem data™
[Record] do forever
/] "execio 1 DISKRU infile (stem data"
Record if rc\= 0 then leave
—/1 datat =
"execio 1 DISKW infile (stem data *
] "execio 1 DISKRU infile (stem data"
[Record| end
“"EXECIO 0 DISKRU infile (finis"
INFILE

The EXECIO command can be used to blank out records by using DISKRU and DISKW operations to set the updated records to blank; however, no records will actually be deleted.

Click Play to see how selected records can be set to blanks.

0 22128 (6

= Updating Data Sets > Emptying Data Sets

Emptying data sets

/* Clear all records from a data set */

“execio 0 DISKW infile (OPEN FINIS"

- REXX program

INFILE

The DISKW operation can also remove all the records from a data set by opening it in write mode and closing it without writing any records.

Click Play to see how the DISKW operations, in conjunction with the OPEN and FINIS options, will clear a data set.

0 23128 C

